scholarly journals Causes of Interannual and Interdecadal Variations of the Summertime Pacific–Japan-Like Pattern over East Asia

2017 ◽  
Vol 30 (22) ◽  
pp. 8845-8864 ◽  
Author(s):  
Li Tao ◽  
Tim Li ◽  
Yuan-Hui Ke ◽  
Jiu-Wei Zhao

A Pacific–Japan (PJ) pattern index is defined based on the singular value decomposition (SVD) analysis of summertime 500-hPa height in East Asia and precipitation in the tropical western North Pacific (WNP). The time series of this PJ index shows clearly the interannual and interdecadal variations since 1948. Idealized atmospheric general circulation model (AGCM) experiments were carried out to understand the remote and local SST forcing in causing the interannual variations of the PJ pattern and interdecadal variations of the PJ-like pattern. It is found that the PJ interannual variation is closely related to El Niño–Southern Oscillation (ENSO). A basinwide warming occurs in the tropical Indian Ocean (TIO) during El Niño mature winter. The TIO warming persists from the El Niño peak winter to the succeeding summer. Meanwhile, a cold SST anomaly (SSTA) appears in the eastern WNP and persists from the El Niño mature winter to the succeeding summer. Idealized AGCM experiments that separate the TIO and WNP SSTA forcing effects show that both the remote eastern TIO forcing and local WNP SSTA forcing are important in affecting atmospheric heating anomaly in the WNP monsoon region, which further impacts the PJ interannual teleconnection pattern over East Asia. In contrast to the interannual variation, the interdecadal change of the PJ-like pattern is primarily affected by the interdecadal change of SST in the TIO rather than by the local SSTA in the WNP.

2008 ◽  
Vol 21 (18) ◽  
pp. 4647-4663 ◽  
Author(s):  
Benjamin A. Cash ◽  
Xavier Rodó ◽  
James L. Kinter

Abstract Recent studies arising from both statistical analysis and dynamical disease models indicate that there is a link between incidence of cholera, a paradigmatic waterborne bacterial disease (WBD) endemic to Bangladesh, and the El Niño–Southern Oscillation (ENSO). However, a physical mechanism explaining this relationship has not yet been established. A regionally coupled, or “pacemaker,” configuration of the Center for Ocean–Land–Atmosphere Studies atmospheric general circulation model is used to investigate links between sea surface temperature in the central and eastern tropical Pacific and the regional climate of Bangladesh. It is found that enhanced precipitation tends to follow winter El Niño events in both the model and observations, providing a plausible physical mechanism by which ENSO could influence cholera in Bangladesh. The enhanced precipitation in the model arises from a modification of the summer monsoon circulation over India and Bangladesh. Westerly wind anomalies over land to the west of Bangladesh lead to increased convergence in the zonal wind field and hence increased moisture convergence and rainfall. This change in circulation results from the tropics-wide warming in the model following a winter El Niño event. These results suggest that improved forecasting of cholera incidence may be possible through the use of climate predictions.


A model is being developed for tropical air-sea interaction studies that is intermediate in complexity between the large coupled general circulation models (GCMS) that are coming into use, and the simple two-level models with which pioneering El Nino Southern Oscillation studies were done. The model consists of a stripped-down tropical Pacific Ocean GCM, coupled to an atmospheric model that is sufficiently simple that steady-state solutions may be found for low-level flow and surface stress, given oceanic boundary conditions. This permits examination of the nature of interannual coupled oscillations in the absence of atmospheric noise. In preliminary tests of the model the coupled system is found to undergo a Hopf bifurcation as certain parameters are varied, giving rise to sustained three to four year oscillations. For stronger coupling, a secondary bifurcation yields six month coupled oscillations during the warm phase of the El Nino-period oscillation. Such variability could potentially affect the predictability of the coupled system.


2016 ◽  
Vol 29 (12) ◽  
pp. 4347-4359 ◽  
Author(s):  
Wenjun Zhang ◽  
Haiyan Li ◽  
Malte F. Stuecker ◽  
Fei-Fei Jin ◽  
Andrew G. Turner

Abstract Previous studies have shown that the Indo-Pacific atmospheric response to ENSO comprises two dominant modes of variability: a meridionally quasi-symmetric response (independent of the annual cycle) and an antisymmetric response (arising from the nonlinear atmospheric interaction between ENSO variability and the annual cycle), referred to as the combination mode (C-mode). This study demonstrates that the direct El Niño signal over the tropics is confined to the equatorial region and has no significant impact on the atmospheric response over East Asia. The El Niño–associated equatorial anomalies can be expanded toward off-equatorial regions by the C-mode through ENSO’s interaction with the annual cycle. The C-mode is the prime driver for the development of an anomalous low-level anticyclone over the western North Pacific (WNP) during the El Niño decay phase, which usually transports more moisture to East Asia and thereby causes more precipitation over southern China. An atmospheric general circulation model is used that reproduces well the WNP anticyclonic anomalies when both El Niño sea surface temperature (SST) anomalies as well as the SST annual cycle are prescribed as boundary conditions. However, no significant WNP anticyclonic circulation anomaly appears during the El Niño decay phase when excluding the SST annual cycle. The analyses herein of observational data and model experiments suggest that the annual cycle plays a key role in the East Asian climate anomalies associated with El Niño through their nonlinear atmospheric interaction. Hence, a realistic simulation of the annual cycle is crucial in order to correctly capture the ENSO-associated climate anomalies over East Asia.


2007 ◽  
Vol 20 (5) ◽  
pp. 788-800 ◽  
Author(s):  
Andrew B. G. Bush

Abstract A sequence of numerical simulations with a coupled atmosphere–ocean general circulation model configured for particular times during the late Quaternary shows that simulated El Niño–Southern Oscillation (ENSO) events decrease in frequency from the Last Glacial Maximum (LGM) to today, in accord with linear stability theory, but increase in amplitude. Diagnostic analyses indicate that altered momentum fluxes from midlatitude eddy activity caused by changes in orbital forcing (in the Holocene) and topographic forcing (at the LGM) regulate the strength of climatological easterlies and therefore affect both the tropical mean state and the characteristics of interannual variability. The fact that climatic teleconnections associated with paleo-ENSO are fundamentally different during these times suggests a way in which to reconcile some of the existing discrepancies amongst interpretations of proxy records and numerical paleoclimate simulations.


2020 ◽  
Vol 33 (11) ◽  
pp. 4679-4695 ◽  
Author(s):  
Xin Geng ◽  
Wenjun Zhang ◽  
Fei-Fei Jin ◽  
Malte F. Stuecker ◽  
Aaron F. Z. Levine

AbstractRecent studies demonstrated the existence of a conspicuous atmospheric combination mode (C-mode) originating from nonlinear interactions between El Niño–Southern Oscillation (ENSO) and the Pacific warm pool annual cycle (AC). Here we find that the C-mode exhibits prominent decadal amplitude variations during the ENSO decaying boreal spring season. It is revealed that the Atlantic multidecadal oscillation (AMO) can largely explain this waxing and waning in amplitude. A robust positive correlation between ENSO and the C-mode is detected during a negative AMO phase but not during a positive phase. Similar results can also be found in the relationship of ENSO with 1) the western North Pacific (WNP) anticyclone and 2) spring precipitation over southern China, both of which are closely associated with the C-mode. We suggest that ENSO property changes due to an AMO modulation play a crucial role in determining these decadal shifts. During a positive AMO phase, ENSO events are distinctly weaker than those in an AMO negative phase. In addition, El Niño events concurrent with a positive AMO phase tend to exhibit a westward-shifted sea surface temperature (SST) anomaly pattern. These SST characteristics during the positive AMO phase are both not conducive to the development of the meridionally asymmetric C-mode atmospheric circulation pattern and thus reduce the ENSO/C-mode correlation on decadal time scales. These observations can be realistically reproduced by a coupled general circulation model (CGCM) experiment in which North Atlantic SSTs are nudged to reproduce a 50-yr sinusoidally varying AMO evolution. Our conclusion carries important implications for understanding seasonally modulated ENSO dynamics and multiscale climate impacts over East Asia.


2015 ◽  
Vol 143 (11) ◽  
pp. 4597-4617 ◽  
Author(s):  
Yukiko Imada ◽  
Hiroaki Tatebe ◽  
Masayoshi Ishii ◽  
Yoshimitsu Chikamoto ◽  
Masato Mori ◽  
...  

Abstract Predictability of El Niño–Southern Oscillation (ENSO) is examined using ensemble hindcasts made with a seasonal prediction system based on the atmosphere and ocean general circulation model, the Model for Interdisciplinary Research on Climate, version 5 (MIROC5). Particular attention is paid to differences in predictive skill in terms of the prediction error for two prominent types of El Niño: the conventional eastern Pacific (EP) El Niño and the central Pacific (CP) El Niño, the latter having a maximum warming around the date line. Although the system adopts ocean anomaly assimilation for the initialization process, it maintains a significant ability to predict ENSO with a lead time of more than half a year. This is partly due to the fact that the system is little affected by the “spring prediction barrier,” because increases in the error have little dependence on the thermocline variability. Composite analyses of each type of El Niño reveal that, compared to EP El Niños, the ability to predict CP El Niños is limited and has a shorter lead time. This is because CP El Niños have relatively small amplitudes, and thus they are more affected by atmospheric noise; this prevents development of oceanic signals that can be used for prediction.


2007 ◽  
Vol 20 (11) ◽  
pp. 2484-2499 ◽  
Author(s):  
Akio Kitoh ◽  
Tatsuo Motoi ◽  
Shigenori Murakami

Abstract Modulation of El Niño–Southern Oscillation at the mid-Holocene [6000 yr before present (6 ka)] is investigated with a coupled ocean–atmosphere general circulation model. The model is integrated for 300 yr with 6-ka and present (0 ka) insolation both with and without flux adjustment, and the effect of flux adjustment on the simulation of El Niño is investigated. The response in the equatorial Pacific Ocean in 6 ka is in favor of weaker El Niño variability resulting from lowered sea surface temperature (SST) and a more diffuse thermocline. Atmospheric sensitivity in 6 ka is larger than that in 0 ka because of increased trade winds, while oceanic sensitivity in 6 ka is weaker than that in 0 ka, resulting from destabilization of the upper ocean, both in the flux- and non-flux-adjusted experiments. However, the use of flux adjustment causes a difference in the total response. El Niño variability in 6 ka does not change much from that in 0 ka with the flux-adjusted case, while the 6-ka El Niño variability is weaker without flux adjustment. Because the observed proxy data suggest weaker El Niño variability in the mid-Holocene, the non-flux-adjusted version gives a more reasonable response despite a larger bias in its basic states, implying that nondistortion of sensitivity to forcing is more important.


2010 ◽  
Vol 23 (19) ◽  
pp. 5294-5304 ◽  
Author(s):  
Gang Huang ◽  
Kaiming Hu ◽  
Shang-Ping Xie

Abstract The correlation of northwest (NW) Pacific climate anomalies during summer with El Niño–Southern Oscillation (ENSO) in the preceding winter strengthens in the mid-1970s and remains high. This study investigates the hypothesis that the tropical Indian Ocean (TIO) response to ENSO is key to this interdecadal change, using a 21-member ensemble simulation with the Community Atmosphere Model, version 3 (CAM3) forced by the observed history of sea surface temperature (SST) for 1950–2000. In the model hindcast, the TIO influence on the summer NW Pacific strengthens in the mid-1970s, and the strengthened TIO teleconnection coincides with an intensification of summer SST variability over the TIO. This result is corroborated by the fact the model’s skills in simulating NW Pacific climate anomalies during summer increase after the 1970s shift. During late spring to early summer, El Niño–induced TIO warming decays rapidly for the epoch prior to the 1970s shift but grows and persists through summer for the epoch occurring after it. This difference in the evolution of the TIO warming determines the strength of the TIO teleconnection to the NW Pacific in the subsequent summer. An antisymmetric wind pattern develops in spring across the equator over the TIO, and the associated northeasterly anomalies aid the summer warming over the north Indian Ocean by opposing the prevailing southwest monsoon. In the model, this antisymmetric spring wind pattern is well developed after but absent before the 1970s shift.


Sign in / Sign up

Export Citation Format

Share Document