Causes of Interannual and Interdecadal Variations of the Summertime Pacific–Japan-Like Pattern over East Asia
A Pacific–Japan (PJ) pattern index is defined based on the singular value decomposition (SVD) analysis of summertime 500-hPa height in East Asia and precipitation in the tropical western North Pacific (WNP). The time series of this PJ index shows clearly the interannual and interdecadal variations since 1948. Idealized atmospheric general circulation model (AGCM) experiments were carried out to understand the remote and local SST forcing in causing the interannual variations of the PJ pattern and interdecadal variations of the PJ-like pattern. It is found that the PJ interannual variation is closely related to El Niño–Southern Oscillation (ENSO). A basinwide warming occurs in the tropical Indian Ocean (TIO) during El Niño mature winter. The TIO warming persists from the El Niño peak winter to the succeeding summer. Meanwhile, a cold SST anomaly (SSTA) appears in the eastern WNP and persists from the El Niño mature winter to the succeeding summer. Idealized AGCM experiments that separate the TIO and WNP SSTA forcing effects show that both the remote eastern TIO forcing and local WNP SSTA forcing are important in affecting atmospheric heating anomaly in the WNP monsoon region, which further impacts the PJ interannual teleconnection pattern over East Asia. In contrast to the interannual variation, the interdecadal change of the PJ-like pattern is primarily affected by the interdecadal change of SST in the TIO rather than by the local SSTA in the WNP.