scholarly journals Intraseasonal Effects of El Niño–Southern Oscillation on North Atlantic Climate

2018 ◽  
Vol 31 (21) ◽  
pp. 8861-8873 ◽  
Author(s):  
Blanca Ayarzagüena ◽  
Sarah Ineson ◽  
Nick J. Dunstone ◽  
Mark P. Baldwin ◽  
Adam A. Scaife

It is well established that El Niño–Southern Oscillation (ENSO) impacts the North Atlantic–European (NAE) climate, with the strongest influence in winter. In late winter, the ENSO signal travels via both tropospheric and stratospheric pathways to the NAE sector and often projects onto the North Atlantic Oscillation. However, this signal does not strengthen gradually during winter, and some studies have suggested that the ENSO signal is different between early and late winter and that the teleconnections involved in the early winter subperiod are not well understood. In this study, we investigate the ENSO teleconnection to NAE in early winter (November–December) and characterize the possible mechanisms involved in that teleconnection. To do so, observations, reanalysis data and the output of different types of model simulations have been used. We show that the intraseasonal winter shift of the NAE response to ENSO is detected for both El Niño and La Niña and is significant in both observations and initialized predictions, but it is not reproduced by free-running Coupled Model Intercomparison Project phase 5 (CMIP5) models. The teleconnection is established through the troposphere in early winter and is related to ENSO effects over the Gulf of Mexico and Caribbean Sea that appear in rainfall and reach the NAE region. CMIP5 model biases in equatorial Pacific ENSO sea surface temperature patterns and strength appear to explain the lack of signal in the Gulf of Mexico and Caribbean Sea and, hence, their inability to reproduce the intraseasonal shift of the ENSO signal over Europe.

2018 ◽  
Vol 32 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Wenjun Zhang ◽  
Xuebin Mei ◽  
Xin Geng ◽  
Andrew G. Turner ◽  
Fei-Fei Jin

Abstract Many previous studies have demonstrated a high uncertainty in the relationship between El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO). In the present work, decadal modulation by the Atlantic multidecadal oscillation (AMO) is investigated as a possible cause of the nonstationary ENSO–NAO relationship based on observed and reanalysis data. It is found that the negative ENSO–NAO correlation in late winter is significant only when ENSO and the AMO are in phase (AMO+/El Niño and AMO−/La Niña). However, no significant ENSO-driven atmospheric anomalies can be observed over the North Atlantic when ENSO and the AMO are out of phase (AMO−/El Niño and AMO+/La Niña). Further analysis indicates that the sea surface temperature anomaly (SSTA) in the tropical North Atlantic (TNA) plays an essential role in this modulating effect. Because of broadly analogous TNA SSTA responses to both ENSO and the AMO during late winter, a warm SSTA in the TNA is evident when El Niño occurs during a positive AMO phase, resulting in a significantly weakened NAO, and vice versa when La Niña occurs during a negative AMO phase. In contrast, neither the TNA SSTA nor the NAO shows a prominent change under out-of-phase combinations of ENSO and AMO. The AMO modulation and the associated effect of the TNA SSTA are shown to be well reproduced by historical simulations of the HadCM3 coupled model and further verified by forced experiments using an atmospheric circulation model. These offer hope that similar models will be able to make predictions for the NAO when appropriately initialized.


2010 ◽  
Vol 23 (15) ◽  
pp. 4045-4059 ◽  
Author(s):  
Paul E. Roundy ◽  
Kyle MacRitchie ◽  
Jonas Asuma ◽  
Timothy Melino

Abstract Composite global patterns associated with the El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO) are frequently applied to help make predictions of weather around the globe at lead times beyond a few days. However, ENSO modulates the background states through which the MJO and its global response patterns propagate. This paper explores the possibility that nonlinear variations confound the combined use of composites based on the MJO and ENSO separately. Results indicate that when both modes are active at the same time, the associated patterns in the global flow are poorly represented by simple linear combinations of composites based on the MJO and ENSO individually. Composites calculated by averaging data over periods when both modes are present at the same time more effectively describe the associated weather patterns. Results reveal that the high-latitude response to the MJO varies with ENSO over all longitudes, but especially across the North Pacific Rim, North America, and the North Atlantic. Further analysis demonstrates that the MJO influence on indexes of the North Atlantic Oscillation is greatest during La Niña conditions or during periods of rapid adjustment in the phase of ENSO.


2020 ◽  
Author(s):  
Bernat Jiménez-Esteve ◽  
Daniela I. V. Domeisen

Abstract. El Niño Southern Oscillation (ENSO) can exert a remote impact on North Atlantic and European (NAE) winter climate. This teleconnection is driven by the superposition and interaction of different influences, which are generally grouped into two main pathways, namely the tropospheric and stratospheric pathways. In this study, we focus on the tropospheric pathway through the North Pacific and across the North American continent. Due to the possible non-stationary behavior and the limited time period covered by reanalysis data sets, the potential nonlinearity of this pathway remains unclear. In order to address this question, we use a simplified physics atmospheric model forced with seasonally varying prescribed sea surface temperatures (SST) following the evolution of different ENSO phases with linearly varying strength at a fixed location. To isolate the tropospheric pathway the zonal mean stratospheric winds are nudged towards the model climatology. The model experiments indicate that the tropospheric pathway of ENSO to the North Atlantic exhibits significant nonlinearity with respect to the tropical SST forcing, both in the location and amplitude of the impacts. For example, strong El Niño leads to a significantly stronger impact over the North Atlantic Oscillation (NAO) than a La Niña forcing of the same amplitude. For La Niña forcings, there is a saturation in the response, with no further increase in the NAO impact even when doubling the SSTforcing, while this is not the case for El Niño. These findings may have important consequences for long-range predictions of the North Atlantic and Europe.


2018 ◽  
Vol 31 (11) ◽  
pp. 4563-4584 ◽  
Author(s):  
Bernat Jiménez-Esteve ◽  
Daniela I. V. Domeisen

Abstract El Niño–Southern Oscillation (ENSO) exerts an influence on the North Atlantic–European (NAE) region. However, this teleconnection is nonlinear and nonstationary owing to the superposition and interaction of a multitude of influences on this region. The stratosphere is one of the major players in terms of the influence of the ENSO signal on this sector. Nevertheless, there are tropospheric dynamical links between the North Pacific and the North Atlantic that are clearly influenced by ENSO. This tropospheric pathway of ENSO to the NAE has received less attention. In view of this, the present study revisits the tropospheric pathway of ENSO to the North Atlantic using ECMWF reanalysis products. Anomalous propagation of transient and quasi-stationary waves across North America is analyzed with respect to their sensitivity to ENSO. Transient (quasi-stationary zonal waves 1–3) wave activity flux (WAF) from the Pacific to the Atlantic increases during El Niño (La Niña) conditions leading to a negative (positive) phase of the North Atlantic Oscillation (NAO). This response is observed from January to March for El Niño and only visible during February for La Niña events. However, the stratosphere strongly modulates this response. For El Niño (La Niña) conditions a weaker (stronger) stratospheric vortex tends to reinforce the negative (positive) NAO with the stratosphere and troposphere working in tandem, contributing to a stronger and more persistent tropospheric circulation response. These findings may have consequences for the prediction of the NAO during times with an inactive stratosphere.


2012 ◽  
Vol 25 (1) ◽  
pp. 320-342 ◽  
Author(s):  
Ying Li ◽  
Ngar-Cheung Lau

Abstract The dynamical mechanism for the late-winter teleconnection between El Niño–Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) is examined using the output from a 2000-yr integration of a coupled general circulation model (GCM). The coupled model captures many salient features of the observed behavior of both ENSO and NAO, as well as their impact on the surface climate in late winter. Both the observational and model data indicate more occurrences of negative phase of NAO in late winter during El Niño events, and positive NAO in La Niña episodes. The potential role of high-frequency transient eddies in the above teleconnection is diagnosed. During El Niño winters, the intensified transient disturbances along the equatorward-shifted North Pacific storm track extend their influences farther downstream. The eddy-induced negative height tendencies are found to be more coherent and stronger over North Atlantic than that over North Pacific. These negative height tendencies over the North Atlantic are coincident with the southern lobe of NAO, and thus favor more occurrences of negative NAO events. During those El Niño winters with relatively strong SST warming in eastern equatorial Pacific, the eastward extension of eddy activity is reinforced by the enhanced near-surface baroclinicity over the subtropical eastern Pacific. This flow environment supports a stronger linkage between the Pacific and Atlantic storm tracks, and is more conducive to a negative NAO phase. These model results are supported by a parallel analysis of various observational datasets. It is further demonstrated that these transient eddy effects can be reproduced in atmospheric GCM integrations subjected to ENSO-related SST forcing in the tropical Pacific.


2020 ◽  
Vol 1 (1) ◽  
pp. 225-245 ◽  
Author(s):  
Bernat Jiménez-Esteve ◽  
Daniela I. V. Domeisen

Abstract. The El Niño–Southern Oscillation (ENSO) can exert a remote impact on North Atlantic and European (NAE) winter climate. This teleconnection is driven by the superposition and interaction of different influences, which are generally grouped into two main pathways, namely the tropospheric and stratospheric pathways. In this study, we focus on the tropospheric pathway through the North Pacific and across the North American continent. Due to the possible nonstationary behavior and the limited time period covered by reanalysis datasets, the potential nonlinearity of this pathway remains unclear. In order to address this question, we use a simplified physics atmospheric model forced with seasonally varying prescribed sea surface temperatures (SST) following the evolution of different ENSO phases with linearly varying strength at a fixed location. To isolate the tropospheric pathway the zonal mean stratospheric winds are nudged towards the model climatology. The model experiments indicate that the tropospheric pathway of ENSO to the North Atlantic exhibits significant nonlinearity with respect to the tropical SST forcing, both in terms of the location and amplitude of the impacts. For example, strong El Niño leads to a significantly stronger impact on the North Atlantic Oscillation (NAO) than a La Niña forcing of the same amplitude. For La Niña forcings, there is a saturation in the response, with no further increase in the NAO impact even when doubling the SST forcing, while this is not the case for El Niño. These findings may have important consequences for long-range prediction of the North Atlantic and Europe.


Sign in / Sign up

Export Citation Format

Share Document