scholarly journals A Tropical Stochastic Skeleton Model for the MJO, El Niño, and Dynamic Walker Circulation: A Simplified GCM

2018 ◽  
Vol 31 (22) ◽  
pp. 9261-9282 ◽  
Author(s):  
Sulian Thual ◽  
Andrew J. Majda ◽  
Nan Chen

A simple dynamical stochastic model for the tropical ocean atmosphere is proposed that captures qualitatively major intraseasonal to interannual processes altogether including El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation (MJO), the associated wind bursts, and the background dynamic Walker circulation. Such a model serves as a prototype “skeleton” for general circulation models (GCMs) that solve similar dynamical interactions across several spatiotemporal scales but usually show common and systematic biases in representing tropical variability as a whole. The most salient features of ENSO, the wind bursts, and the MJO are captured altogether including their overall structure, evolution, and fundamental interactions in addition to their intermittency, diversity, and energy distribution across scales. Importantly, the intraseasonal wind bursts and the MJO are here solved dynamically, which provides their upscale contribution to the interannual flow as well as their modulation in return in a more explicit way. This includes a realistic onset of El Niño events with increased wind bursts and MJO activity starting in the Indian Ocean to the western Pacific and expanding eastward toward the central Pacific, as well as significant interannual modulation of the characteristics of intraseasonal variability. A hierarchy of cruder model versions is also analyzed in order to highlight fundamental concepts related to the treatment of multiple time scales, main convective nonlinearities, and the associated stochastic convective parameterizations. The model developed here also should be useful to diagnose, analyze, and help eliminate the strong tropical biases that exist in current operational models.

2016 ◽  
Vol 29 (5) ◽  
pp. 1717-1732 ◽  
Author(s):  
Autumn Kidwell ◽  
Tong Lee ◽  
Young-Heon Jo ◽  
Xiao-Hai Yan

Abstract The variability of the South Pacific convergence zone (SPCZ) is evaluated using ocean surface wind products derived from the atmospheric reanalysis ERA-Interim for the period of 1981–2014 and QuickSCAT for the period of 1999–2009. From these products, indices were developed to represent the SPCZ strength, area, and centroid location. Excellent agreement is found between the indices derived from the two wind products during the QuikSCAT period in terms of the spatiotemporal structures of the SPCZ. The longer ERA-Interim product is used to study the variations of SPCZ properties on intraseasonal, seasonal, interannual, and decadal time scales. The SPCZ strength, area, and centroid latitude have a dominant seasonal cycle. In contrast, the SPCZ centroid longitude is dominated by intraseasonal variability due to MJO influence. The SPCZ indices are all correlated with El Niño–Southern Oscillation indices. Interannual and intraseasonal variations of SPCZ strength during strong El Niño are approximately twice as large as the respective seasonal variations. SPCZ strength depends more on the intensity of El Niño rather than the central-Pacific versus eastern-Pacific type. The change from positive to negative Pacific decadal oscillation (PDO) around 1999 results in a westward shift of the SPCZ centroid longitude, a much smaller interannual swing in centroid latitude, and a decrease in SPCZ area. This study improves the understanding of the variations of the SPCZ on multiple time scales and reveals the variations of SPCZ strength not reported previously. The diagnostics analyses can be used to evaluate climate models to gauge their fidelity.


2021 ◽  
pp. 1-56
Author(s):  
Qiu Yang ◽  
Andrew J. Majda ◽  
Nan Chen

AbstractThe El Niño-Southern Oscillation (ENSO) diversity has a significant impact on global climate and seasonal prediction. However, it is still a challenging problem for present-day global climate models to simulate different types of ENSO events with realistic features simultaneously. In this paper, a tropical stochastic skeleton model for the interactions among wind bursts and the Madden-Julian Oscillation (MJO), the El Niño, and the Walker circulation is developed to reproduce both dynamical and statistical features of the ENSO diversity. In this model, the intraseasonal component with state-dependent noise captures general features of wind bursts and the MJO, both of which play important roles in triggering the El Niño. The thermocline feedback is the dominant mechanism for generating the eastern Pacific (EP) El Niño, while a nonlinear zonal advection is incorporated into the model that contributes to the central Pacific (CP) El Niño. Besides, a simple but effective stochastic process describing the multidecadal variation of the background Walker circulation modulates the spatial patterns and occurrence frequency of the EP and CP El Niño. This model succeeds in simulating the quasi-regular moderate EP El Niño, the super El Niño, and the CP El Niño as well as the La Niña simultaneously. It also captures the observed non-Gaussian characteristics of sea surface temperature anomalies in different Niño regions. Individual case studies highlight the outstanding skill of the model in reproducing the observed El Niño episodes and their underlying mechanisms.


2018 ◽  
Vol 31 (2) ◽  
pp. 693-725 ◽  
Author(s):  
Dimitrios Giannakis ◽  
Joanna Slawinska

The coupled atmosphere–ocean variability of the Indo-Pacific domain on seasonal to multidecadal time scales is investigated in CCSM4 and in observations through nonlinear Laplacian spectral analysis (NLSA). It is found that ENSO modes and combination modes of ENSO with the annual cycle exhibit a seasonally synchronized southward shift of equatorial surface zonal winds and thermocline adjustment consistent with terminating El Niño and La Niña events. The surface winds associated with these modes also generate teleconnections between the Pacific and Indian Oceans, leading to SST anomalies characteristic of the Indian Ocean dipole. The family of NLSA ENSO modes is used to study El Niño–La Niña asymmetries, and it is found that a group of secondary ENSO modes with more rapidly decorrelating temporal patterns contributes significantly to positively skewed SST and zonal wind statistics. Besides ENSO, fundamental and combination modes representing the tropospheric biennial oscillation (TBO) are found to be consistent with mechanisms for seasonally synchronized biennial variability of the Asian–Australian monsoon and Walker circulation. On longer time scales, a multidecadal pattern referred to as the west Pacific multidecadal mode (WPMM) is established to significantly modulate ENSO and TBO activity, with periods of negative SST anomalies in the western tropical Pacific favoring stronger ENSO and TBO variability. This behavior is attributed to the fact that cold WPMM phases feature anomalous decadal westerlies in the tropical central Pacific, as well as an anomalously flat zonal thermocline profile in the equatorial Pacific. Moreover, the WPMM is found to correlate significantly with decadal precipitation over Australia.


2019 ◽  
Vol 54 (1-2) ◽  
pp. 885-899 ◽  
Author(s):  
Xiaoxiao Tan ◽  
Youmin Tang ◽  
Tao Lian ◽  
Zhixiong Yao ◽  
Xiaojing Li ◽  
...  

AbstractNumerous works have indicated that westerly wind bursts (WWBs) have a significant contribution to the development of El Niño events. However, the simulation of WWBs commonly suffers from large biases in the current generation of coupled general circulation models (CGCMs), limiting our ability to predict El Niño events. In this study, we introduce a WWBs parameterization scheme into the global coupled Community Earth System Model (CESM) to improve the representation of WWBs and to study the impacts of WWBs on El Niño-Southern Oscillation (ENSO) characteristics. It is found that CESM with the WWBs parameterization scheme can generate more realistic characteristics of WWBs, in particular their location and seasonal variation of occurrence. With the parameterized WWBs, the skewness of the Niño 3 index is increased, in better agreement with observation. Eastern Pacific El Niño and central Pacific El Niño events could be successfully reproduced in the model run with WWBs parameterization. Further diagnoses show that the enhanced horizontal advection in the central Pacific and vertical advection in the eastern Pacific, both of which are triggered by WWBs, are crucial factors responsible for the improvements in ENSO simulation. Clearly, WWBs have important effects on ENSO asymmetry and ENSO diversity.


Author(s):  
Swadhin Behera ◽  
Toshio Yamagata

The El Niño Modoki/La Niña Modoki (ENSO Modoki) is a newly acknowledged face of ocean-atmosphere coupled variability in the tropical Pacific Ocean. The oceanic and atmospheric conditions associated with the El Niño Modoki are different from that of canonical El Niño, which is extensively studied for its dynamics and worldwide impacts. A typical El Niño event is marked by a warm anomaly of sea surface temperature (SST) in the equatorial eastern Pacific. Because of the associated changes in the surface winds and the weakening of coastal upwelling, the coasts of South America suffer from widespread fish mortality during the event. Quite opposite of this characteristic change in the ocean condition, cold SST anomalies prevail in the eastern equatorial Pacific during the El Niño Modoki events, but with the warm anomalies intensified in the central Pacific. The boreal winter condition of 2004 is a typical example of such an event, when a tripole pattern is noticed in the SST anomalies; warm central Pacific flanked by cold eastern and western regions. The SST anomalies are coupled to a double cell in anomalous Walker circulation with rising motion in the central parts and sinking motion on both sides of the basin. This is again a different feature compared to the well-known single-cell anomalous Walker circulation during El Niños. La Niña Modoki is the opposite phase of the El Niño Modoki, when a cold central Pacific is flanked by warm anomalies on both sides.The Modoki events are seen to peak in both boreal summer and winter and hence are not seasonally phase-locked to a single seasonal cycle like El Niño/La Niña events. Because of this distinction in the seasonality, the teleconnection arising from these events will vary between the seasons as teleconnection path will vary depending on the prevailing seasonal mean conditions in the atmosphere. Moreover, the Modoki El Niño/La Niña impacts over regions such as the western coast of the United States, the Far East including Japan, Australia, and southern Africa, etc., are opposite to those of the canonical El Niño/La Niña. For example, the western coasts of the United States suffer from severe droughts during El Niño Modoki, whereas those regions are quite wet during El Niño. The influences of Modoki events are also seen in tropical cyclogenesis, stratosphere warming of the Southern Hemisphere, ocean primary productivity, river discharges, sea level variations, etc. A remarkable feature associated with Modoki events is the decadal flattening of the equatorial thermocline and weakening of zonal thermal gradient. The associated ocean-atmosphere conditions have caused frequent and persistent developments of Modoki events in recent decades.


2010 ◽  
Vol 23 (3) ◽  
pp. 726-742 ◽  
Author(s):  
Jing-Jia Luo ◽  
Ruochao Zhang ◽  
Swadhin K. Behera ◽  
Yukio Masumoto ◽  
Fei-Fei Jin ◽  
...  

Abstract Climate variability in the tropical Indo-Pacific sector has undergone dramatic changes under global ocean warming. Extreme Indian Ocean dipole (IOD) events occurred repeatedly in recent decades with an unprecedented series of three consecutive episodes during 2006–08, causing vast climate and socioeconomic effects worldwide and weakening the historic El Niño–Indian monsoon relationship. Major attention has been paid to the El Niño influence on the Indian Ocean, but how the IOD influences El Niño and its predictability remained an important issue to be understood. On the basis of various forecast experiments activating and suppressing air–sea coupling in the individual tropical ocean basins using a state-of-the-art coupled ocean–atmosphere model with demonstrated predictive capability, the present study shows that the extreme IOD plays a key role in driving the 1994 pseudo–El Niño, in contrast with traditional El Niño theory. The pseudo–El Niño is more frequently observed in recent decades, coincident with a weakened atmospheric Walker circulation in response to anthropogenic forcing. The study’s results suggest that extreme IOD may significantly enhance El Niño and its onset forecast, which has being a long-standing challenge, and El Niño in turn enhances IOD and its long-range predictability. The intrinsic El Niño–IOD interaction found here provides hope for enhanced prediction skill of both of these climate modes, and it sheds new light on the tropical climate variations and their changes under the influence of global warming.


2018 ◽  
Vol 31 (2) ◽  
pp. 593-612
Author(s):  
Ayako Seiki ◽  
Yukari N. Takayabu ◽  
Takuya Hasegawa ◽  
Kunio Yoneyama

The lack of westerly wind bursts (WWBs) when atmospheric intraseasonal variability (ISV) events occur from boreal spring to autumn is investigated by comparing two types of El Niño years with unmaterialized El Niño (UEN) years. Although high ocean heat content buildup and several ISV events propagating eastward are observed in all three types of years, few WWBs accompany these in the UEN years. The eddy kinetic energy budget analysis based on ISV shows that mean westerly winds in the lower troposphere facilitate the development of eddy disturbances, including WWBs, through convergence and meridional shear of zonal winds. In the UEN years, these westerly winds are retracted westward and do not reach the equatorial central Pacific mainly as a result of interannual components. In addition, positive sea surface temperature anomalies in the western Pacific, which are conducive to active convection, spread widely in a meridional direction centered on 15°N. Both westward-retracted mean westerlies and off-equatorial warming enhance off-equatorial eddies, which result in a reduction in equatorial eddies such as WWBs. The characteristics of the UEN years are significantly different from those observed during the eastern Pacific El Niño (EP-EN) years, which are characterized by anomalous cooling (warming) and suppressed (enhanced) convective eddies in the off-equatorial (equatorial) western Pacific. The central Pacific El Niño years show mixed features during both EP-EN and UEN years. Different background states not only in the equatorial region but also in the off-equatorial region can be a reason for the lack of WWBs in the UEN years.


2007 ◽  
Vol 135 (10) ◽  
pp. 3346-3361 ◽  
Author(s):  
Ayako Seiki ◽  
Yukari N. Takayabu

Abstract The mechanism of synoptic-scale eddy development in the generation of westerly wind bursts (WWBs) over the western–central Pacific, and their relationship with the El Niño–Southern Oscillation (ENSO) and the Madden–Julian oscillation (MJO), were examined. In the WWB occurrences, barotropic structures of equatorial eddy westerlies with cyclonic disturbances were found from the surface to the upper troposphere. The dominant contributions to substantial eddy kinetic energy (EKE) were the barotropic energy conversion (KmKe) in the lower and middle tropospheres and the conversion from eddy available potential energy (PeKe) in the upper troposphere. Low-frequency environmental westerlies centered near the equator preceded strong zonal convergence and meridional shear, resulting in the substantial KmKe. The activation of synoptic convection also contributed to an increase in EKE through PeKe. These energies were redistributed to the lower-equatorial troposphere through energy flux convergence (GKe). These results showed that environmental fields contribute to the EKE increase near the equator and are important factors in WWB occurrences. Next, eddy growth was compared under different phases of MJO and ENSO. The MJO westerly phases of strong MJO events were classified into two groups, in terms of ENSO phases. Higher EKE values were found over the equatorial central Pacific in the WWB–ENSO correlated (pre–El Niño) periods. The energetics during these periods comported with those of the WWB generations. In the uncorrelated periods, the enhancement of eddy disturbances occurred far from the equator near the Philippines, where the activities of the easterly wave disturbances are well known. It is noteworthy that the enhanced region of the disturbances in the pre–El Niño periods coincided with the vicinity of large-scale MJO convection. It is suggested that coincidence corresponds with an enhancement of the internal disturbances embedded in the MJO, which is found only when the environmental conditions are favorable in association with ENSO.


2020 ◽  
Author(s):  
Kyung-Sook Yun ◽  
Axel Timmermann ◽  
Malte F. Stuecker

Abstract. The El Niño-Southern Oscillation (ENSO) influences the most extensive tropospheric circulation cells on our planet, known as Hadley and Walker circulations. Previous studies have largely focused on the effect of ENSO on the strength of these cells. However, what has remained uncertain is whether interannual sea surface temperature anomalies can also cause synchronized spatial shifts of these circulations. Here, by examining the spatio-temporal relationship between Hadley and Walker cells in observations and climate model experiments, we demonstrate that the seasonally evolving warm pool SST anomalies in the decay phase of an El Niño event generate a meridionally asymmetric Walker circulation response, which couples the zonal and meridional atmospheric overturning circulations. This process, which can be characterized as a phase-synchronized spatial shift in Walker and Hadley cells, is accompanied by cross-equatorial northwesterly low-level flow that diverges from an area of anomalous drying in the western North Pacific and converges towards a region with anomalous moistening in the southern central Pacific. Our results show that the SST-induced concurrent spatial shifts of the two circulations are climatically relevant as they can further amplify extratropical precipitation variability on interannual timescales.


2016 ◽  
Vol 113 (42) ◽  
pp. 11732-11737 ◽  
Author(s):  
Nan Chen ◽  
Andrew J. Majda

The Central Pacific El Niño (CP El Niño) has been frequently observed in recent decades. The phenomenon is characterized by an anomalous warm sea surface temperature (SST) confined to the central Pacific and has different teleconnections from the traditional El Niño. Here, simple models are developed and shown to capture the key mechanisms of the CP El Niño. The starting model involves coupled atmosphere–ocean processes that are deterministic, linear, and stable. Then, systematic strategies are developed for incorporating several major mechanisms of the CP El Niño into the coupled system. First, simple nonlinear zonal advection with no ad hoc parameterization of the background SST gradient is introduced that creates coupled nonlinear advective modes of the SST. Secondly, due to the recent multidecadal strengthening of the easterly trade wind, a stochastic parameterization of the wind bursts including a mean easterly trade wind anomaly is coupled to the simple atmosphere–ocean processes. Effective stochastic noise in the wind burst model facilitates the intermittent occurrence of the CP El Niño with realistic amplitude and duration. In addition to the anomalous warm SST in the central Pacific, other major features of the CP El Niño such as the rising branch of the anomalous Walker circulation being shifted to the central Pacific and the eastern Pacific cooling with a shallow thermocline are all captured by this simple coupled model. Importantly, the coupled model succeeds in simulating a series of CP El Niño that lasts for 5 y, which resembles the two CP El Niño episodes during 1990–1995 and 2002–2006.


Sign in / Sign up

Export Citation Format

Share Document