Interdecadal Variations in the Frequency of Persistent Hot Events in Boreal Summer over Midlatitude Eurasia

2019 ◽  
Vol 32 (16) ◽  
pp. 5161-5177 ◽  
Author(s):  
Ning Shi ◽  
Yicheng Wang ◽  
Xiaoqiong Wang ◽  
Pinyu Tian

ABSTRACT Based on the daily Japanese 55-year Reanalysis (JRA-55) dataset, this study reveals that southern Europe/western Asia (SEWA) and northern China are two large-scale regions that have exhibited consistent interdecadal variations in the frequency of persistent hot events (PHEs). Over the past 58 summers, the period approximately from 1973 to 1996 represents an inactive period for the occurrence of PHEs over the two regions, whereas the antecedent and subsequent periods are active periods. At the subseasonal time scale, the regional PHEs over SEWA are characterized by quasi-stationary wave train anomalies aloft from the northwest Atlantic to Europe, while the regional PHEs over northern China are characterized by quasi-stationary wave train anomalies over the Eurasian continent. The persistence of the quasi-stationary anomalies is associated with the Rossby wave propagation. Moreover, the energy extraction from the basic flow is also favorable for their persistence. Our study reveals that the above typical circulation anomalies for the PHEs over both SEWA and northern China are in phase with the background circulation changes during the two active periods. Thus, the interdecadal changes in background circulation can modulate the frequency of PHEs over the two regions simultaneously. Further analysis reveals that the background circulation changes are closely related to the interdecadal variation in the Silk Road pattern based on their similarities in both spatial pattern and temporal variation. The sea surface temperature over four particular regions seems to facilitate the phase shifts in the Silk Road pattern on the interdecadal time scale.

2017 ◽  
Vol 30 (24) ◽  
pp. 9915-9932 ◽  
Author(s):  
Lin Wang ◽  
Peiqiang Xu ◽  
Wen Chen ◽  
Yong Liu

Based on several reanalysis and observational datasets, this study suggests that the Silk Road pattern (SRP), a major teleconnection pattern stretching across Eurasia in the boreal summer, shows clear interdecadal variations that explain approximately 50% of its total variance. The interdecadal SRP features a strong barotropic wave train along the Asian subtropical jet, resembling its interannual counterpart. Additionally, it features a second weak wave train over the northern part of Eurasia, leading to larger meridional scale than its interannual counterpart. The interdecadal SRP contributes approximately 40% of the summer surface air temperature’s variance with little uncertainty and 10%–20% of the summer precipitation’s variance with greater uncertainty over large domains of Eurasia. The interdecadal SRP shows two regime shifts in 1972 and 1997. The latter shift explains over 40% of the observed rainfall reduction over northeastern Asia and over 40% of the observed warming over eastern Europe, western Asia, and northeastern Asia, highlighting its importance to the recent decadal climate variations over Eurasia. The Atlantic multidecadal oscillation (AMO) does not show a significant linear relationship with the interdecadal SRP. However, the Monte Carlo bootstrapping resampling analysis suggests that the positive (negative) phases of the spring and summer AMO significantly facilitate the occurrence of negative (positive) phases of the interdecadal SRP, implying plausible prediction potentials for the interdecadal variations of the SRP. The reported results are insensitive to the long-term trends in datasets and thereby have little relevance to externally forced climate change.


2020 ◽  
Vol 33 (10) ◽  
pp. 4315-4332 ◽  
Author(s):  
Huixin Li ◽  
Shengping He ◽  
Yongqi Gao ◽  
Huopo Chen ◽  
Huijun Wang

AbstractBased on the long-term reanalysis datasets and the multivariate copula method, this study reveals that the frequency of summer hot drought events (SHDEs) over northeastern China (NEC) shows interdecadal variations during 1925–2010. It is revealed that the summer sea surface temperature (SST) over the North Atlantic has a significant positive correlation with the frequency of SHDEs over NEC on the decadal time scale, indicating a potential influence of the Atlantic multidecadal oscillation (AMO). Further analyses indicate that during the positive phases of the AMO, the warming SST over the North Atlantic can trigger a stationary Rossby wave originating from the North Atlantic, which splits into two wave trains propagating along two different routes. One is a zonally orientated wave train that resembles the Silk Road pattern, whereas the other is an arching wave train that resembles the polar–Eurasian pattern. A negative (positive) phase of the Silk Road pattern (polar–Eurasian pattern) may result in the weakened westerly wind along the jet stream, the downward vertical motion, and the anomalous positive geopotential center over NEC, providing favorable conditions for precipitation deficiency and high temperature and resulting in increased SHDEs. Thus, the Silk Road pattern and the polar–Eurasian pattern serve as linkages between the AMO and SHDEs over northeastern China in summer on the interdecadal time scale. Model simulations from CAM4 perturbed with warmer SST in the North Atlantic show precipitation deficiency and high temperature conditions over northeastern China in summer, supporting the potential impacts of the North Atlantic SST on SHDEs over northeastern China. The results suggest that the phase of the AMO should be taken into account in the decadal prediction of SHDEs over northeastern China in summer.


2021 ◽  
Author(s):  
Fangxing Tian ◽  
Nicholas Klingaman ◽  
Buwen Dong

<p>Sub-seasonal heatwave-driven concurrent hot and dry extreme events (HDEs) can cause substantial damage to crops, and hence to lives and livelihoods. However, the physical processes that lead to these devastating events are not well-understood.</p><p>Based on observations and reanalysis data for 1979-2016 over China, we show that HDEs occur preferentially over central and eastern China (CEC) and southern China (SC), with a maximum of 3 events year<sup>-1</sup> along the Yangtze Valley. The probability of longer-lived and potentially more damaging HDEs is larger in SC than in CEC. Over SC the key factors of HDEs—positive anomalies of surface air temperature and evapotranspiration, and negative anomalies of soil moisture—begin two pentads before maximising at the peak of the HDEs. These anomalies occur south of a positive height anomaly at 200 hPa, associated with a large-scale subsidence anomaly. The processes over CEC are similar to SC, but the anomalies begin one pentad before the peak. HDE frequency is strongly related to the Silk Road Pattern and the Boreal Summer Intraseasonal Oscillation. Positive phases of the Silk Road Pattern and suppressed phases of the Boreal Summer Intraseasonal Oscillation are associated with positive height anomalies over CEC and SC, increasing HDE frequency by about 35-54% relative to the climatological mean.  Understanding the effects of sub-seasonal and seasonal atmospheric circulation variability, such as the Silk Road Pattern and Boreal Summer Intraseasonal Oscillation, on HDEs is important to improve HDE predictions over China.</p>


2020 ◽  
pp. 1-40
Author(s):  
Fangxing Tian ◽  
Nicholas P. Klingaman ◽  
Buwen Dong

AbstractSub-seasonal heatwave-driven concurrent hot and dry extreme events (HDEs) can cause substantial damage to crops, and hence to lives and livelihoods. However, the physical processes that lead to these devastating events are not well-understood. Based on observations and reanalysis data for 1979-2016 over China, we show that HDEs occur preferentially over central and eastern China (CEC) and southern China (SC), with a maximum of 3 events year-1 along the Yangtze Valley. The probability of longer-lived and potentially more damaging HDEs is larger in SC than in CEC. Over SC the key factors of HDEs—positive anomalies of surface air temperature and evapotranspiration, and negative anomalies of soil moisture—begin two pentads before maximising at the peak of the HDEs. These anomalies occur south of a positive height anomaly at 200 hPa, associated with a large-scale subsidence anomaly. The processes over CEC are similar to SC, but the anomalies begin one pentad before the peak. HDE frequency is strongly related to the Silk Road Pattern and the Boreal Summer Intraseasonal Oscillation. Positive phases of the Silk Road Pattern and suppressed phases of the Boreal Summer Intraseasonal Oscillation are associated with positive height anomalies over CEC and SC, increasing HDE frequency by about 35-54% relative to the climatological mean. Understanding the effects of sub-seasonal and seasonal atmospheric circulation variability, such as the Silk Road Pattern and Boreal Summer Intraseasonal Oscillation, on HDEs is important to improve HDE predictions over China.


2016 ◽  
Vol 29 (10) ◽  
pp. 3753-3766 ◽  
Author(s):  
Xiaowei Hong ◽  
Riyu Lu

Abstract The Silk Road pattern (SRP), which depicts the teleconnection pattern along the Asian jet, has been extensively investigated and commonly described as the leading mode of upper-tropospheric meridional wind anomalies in summer. In this study, the SRP is identified as having a significant relationship with the meridional displacement of the Asian jet (JMD), which manifests as the leading mode of upper-tropospheric zonal wind anomalies. This significant relationship is confirmed by the correlation coefficient between the indices for JMD and SRP, which is 0.39 and reaches statistical significance at the 0.01 level. When the Asian jet is in a northward (southward) displacement, the phase of SRP tends to be shown as anticyclonic (cyclonic) anomalies over western Asia and East Asia and cyclonic (anticyclonic) anomalies over Europe and central Asia. The authors propose an internal atmospheric mechanism for this relationship. In addition, it is found that the JMD is significantly affected by the tropical surface temperature anomalies. In particular, the negative (positive) SST anomalies in the tropical central and eastern Pacific of the preceding spring lead to significant cooler (warmer) tropical tropospheric temperatures in summer and may induce the northward (southward) displacement of the Asian jet through modifying the meridional gradient of tropospheric temperatures. The tropical tropospheric temperature anomalies may also affect the SRP through the JMD.


2020 ◽  
Vol 33 (22) ◽  
pp. 9567-9580
Author(s):  
Ronald Kwan Kit Li ◽  
Chi Yung Tam ◽  
Ngar Cheung Lau ◽  
Soo Jin Sohn ◽  
Joong Bae Ahn

AbstractThe Silk Road pattern (SR) is a leading mode of atmospheric circulation over midlatitude Eurasia in boreal summer. Its temporal phase is known to be unpredictable in many models. Previous studies have not reached a clear consensus on the role of sea surface temperature (SST) associated with SR. By comparing seasonal hindcasts from the Pusan National University (PNU) coupled general circulation model with reanalysis, we investigate if there are any sources of predictability originating from the SST. It was found that the PNU model cannot predict SR temporally. In fact, SR is associated with El Niño–Southern Oscillation (ENSO) in the model hindcasts, in contrast to reanalysis results in which SR is more associated with North Atlantic SST anomalies. The PNU system, however, shows potential predictability in SR associated with tropical Pacific SST. Bias in stationary Rossby waveguides is proposed as an explanation for the SR–ENSO relationship in hindcast runs. Model upper-level wind bias in the North Atlantic results in a less continuous waveguide connecting the North Atlantic to Asia, and may hinder wave propagations induced by North Atlantic SST to trigger SR. On the other hand, model upper-level wind bias in the subtropical western Pacific may favor westward propagation of zonally elongated waves from the ENSO region to trigger SR. This study implies that the role of SST with regard to SR can be substantially changed depending on the fidelity of model upper-level background winds.


2012 ◽  
Vol 25 (21) ◽  
pp. 7574-7589 ◽  
Author(s):  
Yu Kosaka ◽  
J. S. Chowdary ◽  
Shang-Ping Xie ◽  
Young-Mi Min ◽  
June-Yi Lee

Predictability of summer climate anomalies over East Asia and the northwestern Pacific is investigated using observations and a multimodel hindcast ensemble initialized on 1 May for the recent 20–30 yr. Summertime East Asia is under the influence of the northwestern Pacific subtropical high (PASH). The Pacific–Japan (PJ) teleconnection pattern, a meridional dipole of sea level pressure variability, affects the northwestern PASH. The forecast models generally capture the association of the PJ pattern with the El Niño–Southern Oscillation (ENSO). The Silk Road pattern, a wave train along the summer Asian jet, is another dominant teleconnection that influences the northwestern PASH and East Asia. In contrast to the PJ pattern, observational analysis reveals a lack of correlations between the Silk Road pattern and ENSO. Coupled models cannot predict the temporal phase of the Silk Road pattern, despite their ability to reproduce its spatial structure as the leading mode of atmospheric internal variability. Thus, the pattern is rather unpredictable at monthly to seasonal lead, limiting the seasonal predictability for summer in East Asia. The anomalous summer of 2010 in East Asia is a case in point, illustrating the interference by the Silk Road pattern. Canonical anomalies associated with a decayed El Niño and developing La Niña would have the PJ pattern bring a cold summer to East Asia in 2010. In reality, the Silk Road pattern overwhelmed this tendency, bringing a record-breaking hot summer instead. A dynamical model experiment indicates that European blocking was instrumental in triggering the Silk Road pattern in the 2010 summer.


2021 ◽  
Vol 20 (1-2) ◽  
pp. 125-134
Author(s):  
Oleg Suša

Abstract The article analyzes the historical Silk Road in its long-term development. It entails reflections on the knowledge of Eastern global interactions providing a long-term contextual framework for Eurasia as a single continent. Eurasian globalization influenced the interactions of regions from China and India, through Western Asia, the Middle East, Eastern and Northern Africa and the Mediterranean, and the south of Europe. An important role was played by the Silk Road, as the main historical long-term network of global interactions and communication, which is now being echoed in the new current global initiatives, particularly the Belt and Road Initiative, which updates the historical Silk Road.


Sign in / Sign up

Export Citation Format

Share Document