scholarly journals North Atlantic Modulation of Interdecadal Variations in Hot Drought Events over Northeastern China

2020 ◽  
Vol 33 (10) ◽  
pp. 4315-4332 ◽  
Author(s):  
Huixin Li ◽  
Shengping He ◽  
Yongqi Gao ◽  
Huopo Chen ◽  
Huijun Wang

AbstractBased on the long-term reanalysis datasets and the multivariate copula method, this study reveals that the frequency of summer hot drought events (SHDEs) over northeastern China (NEC) shows interdecadal variations during 1925–2010. It is revealed that the summer sea surface temperature (SST) over the North Atlantic has a significant positive correlation with the frequency of SHDEs over NEC on the decadal time scale, indicating a potential influence of the Atlantic multidecadal oscillation (AMO). Further analyses indicate that during the positive phases of the AMO, the warming SST over the North Atlantic can trigger a stationary Rossby wave originating from the North Atlantic, which splits into two wave trains propagating along two different routes. One is a zonally orientated wave train that resembles the Silk Road pattern, whereas the other is an arching wave train that resembles the polar–Eurasian pattern. A negative (positive) phase of the Silk Road pattern (polar–Eurasian pattern) may result in the weakened westerly wind along the jet stream, the downward vertical motion, and the anomalous positive geopotential center over NEC, providing favorable conditions for precipitation deficiency and high temperature and resulting in increased SHDEs. Thus, the Silk Road pattern and the polar–Eurasian pattern serve as linkages between the AMO and SHDEs over northeastern China in summer on the interdecadal time scale. Model simulations from CAM4 perturbed with warmer SST in the North Atlantic show precipitation deficiency and high temperature conditions over northeastern China in summer, supporting the potential impacts of the North Atlantic SST on SHDEs over northeastern China. The results suggest that the phase of the AMO should be taken into account in the decadal prediction of SHDEs over northeastern China in summer.

2020 ◽  
Vol 33 (22) ◽  
pp. 9567-9580
Author(s):  
Ronald Kwan Kit Li ◽  
Chi Yung Tam ◽  
Ngar Cheung Lau ◽  
Soo Jin Sohn ◽  
Joong Bae Ahn

AbstractThe Silk Road pattern (SR) is a leading mode of atmospheric circulation over midlatitude Eurasia in boreal summer. Its temporal phase is known to be unpredictable in many models. Previous studies have not reached a clear consensus on the role of sea surface temperature (SST) associated with SR. By comparing seasonal hindcasts from the Pusan National University (PNU) coupled general circulation model with reanalysis, we investigate if there are any sources of predictability originating from the SST. It was found that the PNU model cannot predict SR temporally. In fact, SR is associated with El Niño–Southern Oscillation (ENSO) in the model hindcasts, in contrast to reanalysis results in which SR is more associated with North Atlantic SST anomalies. The PNU system, however, shows potential predictability in SR associated with tropical Pacific SST. Bias in stationary Rossby waveguides is proposed as an explanation for the SR–ENSO relationship in hindcast runs. Model upper-level wind bias in the North Atlantic results in a less continuous waveguide connecting the North Atlantic to Asia, and may hinder wave propagations induced by North Atlantic SST to trigger SR. On the other hand, model upper-level wind bias in the subtropical western Pacific may favor westward propagation of zonally elongated waves from the ENSO region to trigger SR. This study implies that the role of SST with regard to SR can be substantially changed depending on the fidelity of model upper-level background winds.


2018 ◽  
Vol 31 (22) ◽  
pp. 9283-9292 ◽  
Author(s):  
Xiaowei Hong ◽  
Riyu Lu ◽  
Shuanglin Li

Abstract The Silk Road Pattern (SRP) is an upper-tropospheric teleconnection pattern along the Asian westerly jet in summer on the interannual time scale, and it exerts great influences on the climate of the Eurasian continent. Results in the present study indicate that the SRP exhibits considerable distinctions between early and late summers (i.e., 1 June–9 July and 10 July–31 August, respectively). The SRP is stronger and more geographically fixed in late summer in comparison with its counterpart in early summer. Furthermore, the SRP is closely connected with the summer North Atlantic Oscillation (SNAO) in late summer, but not in early summer. This closer connection in late summer is manifested clearly in the leading mode of upper-tropospheric meridional wind anomalies over the North Atlantic–Eurasian continent domain. The intensified SNAO–SRP relationship in late summer can be explained by the subseasonal change of the SNAO: albeit being a seesaw pattern common in both early and late summers, there is a shift of this pattern toward the northwest–southeast one in late summer from a north–south one in early summer. The southeastern pole of SNAO in late summer extends into the Eurasian continent, and efficiently triggers the SRP to propagate along the Asian jet. By contrast, the south pole of SNAO in early summer is confined over the North Atlantic and is thus less effective to trigger the SRP propagation.


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 524 ◽  
Author(s):  
Wei Zhao ◽  
Ningfang Zhou ◽  
Shangfeng Chen

Observational and reanalysis data show that the surface air temperature (SAT) over most parts of Europe in June of 2019 broke the highest temperature on record. In this study, we investigate the factors for the formation of this record-breaking high temperature over Europe, focusing on the role of atmospheric circulation anomalies. A strong anomalous anticyclone appeared over Europe, with a quasi-barotropic vertical structure. On one hand, the downward motion anomalies associated with this anomalous anticyclone led to less cloud cover and an increase in downward shortwave radiation, which contributed to the SAT warming over Europe. On the other hand, southerly wind anomalies to the west side of the anomalous anticyclone also resulted in SAT warming via carrying warmer and wetter air northward from lower latitudes. The formation of the anticyclonic anomaly over Europe in June of 2019 was closely related to an atmospheric wave train propagating eastward from the mid-high latitudes of the North Atlantic to Eurasia. The atmospheric wave train over the North Atlantic–Eurasia region is suggested to be mainly related to the Atlantic–Eurasia teleconnection pattern. Further analysis indicates that a decrease in the local soil moisture over Europe may also have escalated the surface temperature warming through a positive land–atmosphere feedback.


2019 ◽  
Vol 32 (16) ◽  
pp. 5161-5177 ◽  
Author(s):  
Ning Shi ◽  
Yicheng Wang ◽  
Xiaoqiong Wang ◽  
Pinyu Tian

ABSTRACT Based on the daily Japanese 55-year Reanalysis (JRA-55) dataset, this study reveals that southern Europe/western Asia (SEWA) and northern China are two large-scale regions that have exhibited consistent interdecadal variations in the frequency of persistent hot events (PHEs). Over the past 58 summers, the period approximately from 1973 to 1996 represents an inactive period for the occurrence of PHEs over the two regions, whereas the antecedent and subsequent periods are active periods. At the subseasonal time scale, the regional PHEs over SEWA are characterized by quasi-stationary wave train anomalies aloft from the northwest Atlantic to Europe, while the regional PHEs over northern China are characterized by quasi-stationary wave train anomalies over the Eurasian continent. The persistence of the quasi-stationary anomalies is associated with the Rossby wave propagation. Moreover, the energy extraction from the basic flow is also favorable for their persistence. Our study reveals that the above typical circulation anomalies for the PHEs over both SEWA and northern China are in phase with the background circulation changes during the two active periods. Thus, the interdecadal changes in background circulation can modulate the frequency of PHEs over the two regions simultaneously. Further analysis reveals that the background circulation changes are closely related to the interdecadal variation in the Silk Road pattern based on their similarities in both spatial pattern and temporal variation. The sea surface temperature over four particular regions seems to facilitate the phase shifts in the Silk Road pattern on the interdecadal time scale.


2021 ◽  
pp. 1-51

Abstract The dominant mode of the interannual variability in the frequency of extreme high-temperature events (FEHE) during summer over eastern China showed a dipole mode with reversed anomalies of FEHE over northeastern and southern China. This study found that the interannual variability of this dipole mode underwent an interdecadal increase after the early 1990s. The anomalous atmospheric circulation responsible for the FEHE dipole mode was associated with the air-sea interaction over the western tropical Pacific and North Atlantic. Due to the weakened correlation between the SST in the tropical Pacific and in the Indian Ocean after the early 1990s, a meridional atmospheric wave train induced by the anomalous SST around the Maritime continent (MCSST) was intensified during 1994–2013, which was also contributed by the increased interannual variability of MCSST. However, under the influence of the anomalous SST in the Indian Ocean concurrent with the anomalous MCSST, the meridional wave train was weakened and contributed less to the dipole mode during 1972–1993. In addition, the dipole mode was associated with the atmospheric wave trains at middle-high latitude, which were different during the two periods and related to different air-sea interaction in the North Atlantic. The interannual variability of the dipole mode induced by the associated SST anomalies in the North Atlantic during 1994–2013 was significantly larger than that during 1972–1993. Therefore, the interannual variability of the dipole mode was increased after the early 1990s.


2017 ◽  
Vol 30 (24) ◽  
pp. 9915-9932 ◽  
Author(s):  
Lin Wang ◽  
Peiqiang Xu ◽  
Wen Chen ◽  
Yong Liu

Based on several reanalysis and observational datasets, this study suggests that the Silk Road pattern (SRP), a major teleconnection pattern stretching across Eurasia in the boreal summer, shows clear interdecadal variations that explain approximately 50% of its total variance. The interdecadal SRP features a strong barotropic wave train along the Asian subtropical jet, resembling its interannual counterpart. Additionally, it features a second weak wave train over the northern part of Eurasia, leading to larger meridional scale than its interannual counterpart. The interdecadal SRP contributes approximately 40% of the summer surface air temperature’s variance with little uncertainty and 10%–20% of the summer precipitation’s variance with greater uncertainty over large domains of Eurasia. The interdecadal SRP shows two regime shifts in 1972 and 1997. The latter shift explains over 40% of the observed rainfall reduction over northeastern Asia and over 40% of the observed warming over eastern Europe, western Asia, and northeastern Asia, highlighting its importance to the recent decadal climate variations over Eurasia. The Atlantic multidecadal oscillation (AMO) does not show a significant linear relationship with the interdecadal SRP. However, the Monte Carlo bootstrapping resampling analysis suggests that the positive (negative) phases of the spring and summer AMO significantly facilitate the occurrence of negative (positive) phases of the interdecadal SRP, implying plausible prediction potentials for the interdecadal variations of the SRP. The reported results are insensitive to the long-term trends in datasets and thereby have little relevance to externally forced climate change.


2020 ◽  
Vol 117 (38) ◽  
pp. 23408-23417
Author(s):  
Hai Cheng ◽  
Haiwei Zhang ◽  
Christoph Spötl ◽  
Jonathan Baker ◽  
Ashish Sinha ◽  
...  

The Younger Dryas (YD), arguably the most widely studied millennial-scale extreme climate event, was characterized by diverse hydroclimate shifts globally and severe cooling at high northern latitudes that abruptly punctuated the warming trend from the last glacial to the present interglacial. To date, a precise understanding of its trigger, propagation, and termination remains elusive. Here, we present speleothem oxygen-isotope data that, in concert with other proxy records, allow us to quantify the timing of the YD onset and termination at an unprecedented subcentennial temporal precision across the North Atlantic, Asian Monsoon-Westerlies, and South American Monsoon regions. Our analysis suggests that the onsets of YD in the North Atlantic (12,870 ± 30 B.P.) and the Asian Monsoon-Westerlies region are essentially synchronous within a few decades and lead the onset in Antarctica, implying a north-to-south climate signal propagation via both atmospheric (decadal-time scale) and oceanic (centennial-time scale) processes, similar to the Dansgaard–Oeschger events during the last glacial period. In contrast, the YD termination may have started first in Antarctica at ∼11,900 B.P., or perhaps even earlier in the western tropical Pacific, followed by the North Atlantic between ∼11,700 ± 40 and 11,610 ± 40 B.P. These observations suggest that the initial YD termination might have originated in the Southern Hemisphere and/or the tropical Pacific, indicating a Southern Hemisphere/tropics to North Atlantic–Asian Monsoon-Westerlies directionality of climatic recovery.


2020 ◽  
Vol 77 (4) ◽  
pp. 1387-1414
Author(s):  
Dehai Luo ◽  
Yao Ge ◽  
Wenqi Zhang ◽  
Aiguo Dai

Abstract In this paper, reanalysis data are first analyzed to reveal that the individual negative (positive)-phase Pacific–North American pattern (PNA) or PNA− (PNA+) has a lifetime of 10–20 days, is characterized by strong (weak) westerly jet stream meanders, and exhibits clear wave train structures, whereas the PNA− with rapid retrogression tends to have longer lifetime and larger amplitude than the PNA+ with slow retrogression. In contrast, the wave train structure of the North Atlantic Oscillation (NAO) is less distinct, and the positive (negative)-phase NAO shows eastward (westward) movement around a higher latitude than the PNA. Moreover, it is found that the PNA wave train occurs under a larger background meridional potential vorticity gradient (PVy) over the North Pacific than that over the North Atlantic for the NAO. A unified nonlinear multiscale interaction (UNMI) model is then developed to explain why the PNA as a nonlinear wave packet has such characteristics and its large difference from the NAO. The model results reveal that the larger background PVy for the PNA (due to its location at lower latitudes) leads to its larger energy dispersion and weaker nonlinearity than the NAO, thus explaining why the PNA (NAO) is largely a linear (nonlinear) process with a strong (weak) wave train structure, though it is regarded as a nonlinear initial-value problem. The smaller PVy for the PNA− than for the PNA+ leads to lower energy dispersion and stronger nonlinearity for PNA−, which allows it to maintain larger amplitude and have a longer lifetime than the PNA+. Thus, the difference in the background PVy is responsible for the asymmetry between the two phases of PNA and the difference between the PNA and NAO.


2007 ◽  
Vol 20 (5) ◽  
pp. 856-870 ◽  
Author(s):  
Lixin Wu ◽  
Feng He ◽  
Zhengyu Liu ◽  
Chun Li

Abstract In this paper, the atmospheric teleconnections of the tropical Atlantic SST variability are investigated in a series of coupled ocean–atmosphere modeling experiments. It is found that the tropical Atlantic climate not only displays an apparent interhemispheric link, but also significantly influences the North Atlantic Oscillation (NAO) and the El Niño–Southern Oscillation (ENSO). In spring, the tropical Atlantic SST exhibits an interhemispheric seesaw controlled by the wind–evaporation–SST (WES) feedback that subsequently decays through the mediation of the seasonal migration of the ITCZ. Over the North Atlantic, the tropical Atlantic SST can force a significant coupled NAO–dipole SST response in spring that changes to a coupled wave train–horseshoe SST response in the following summer and fall, and a recurrence of the NAO in the next winter. The seasonal changes of the atmospheric response as well as the recurrence of the next winter’s NAO are driven predominantly by the tropical Atlantic SST itself, while the resulting extratropical SST can enhance the atmospheric response, but it is not a necessary bridge of the winter-to-winter NAO persistency. Over the Pacific, the model demonstrates that the north tropical Atlantic (NTA) SST can also organize an interhemispheric SST seesaw in spring in the eastern equatorial Pacific that subsequently evolves into an ENSO-like pattern in the tropical Pacific through mediation of the ITCZ and equatorial coupled ocean–atmosphere feedback.


2020 ◽  
Author(s):  
Binhe Luo ◽  
Dehai Luo ◽  
Aiguo Dai ◽  
Lixin Wu

<p>Winter surface air temperature (SAT) over North America exhibits pronounced variability on sub-seasonal-to-interdecadal timescales, but its causes are not fully understood. Here observational and reanalysis data from 1950-2017 are analyzed to investigate these causes. Detrended daily SAT data reveals a known warm-west/cold-east (WWCE) dipole over midlatitude North America and a cold-north/warm-south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO-) concurs with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO<sup>+</sup>), the WWCE dipole weakens and the CNWS dipole is enhanced. In particular, the WWCE dipole is favored by a combination of eastward-displaced PB and NAO<sup>-</sup> that form a negative Arctic Oscillation. Furthermore, a WWCE dipole can form over midlatitude North America when PB occurs together with southward-displaced NAO<sup>+</sup>.The PB events concurring with NAO<sup>-</sup> (NAO<sup>+</sup>) and SAT WWCE (CNWS) dipole are favored by the El Nio-like (La Nia-like) SST mode, though related to the North Atlantic warm-cold-warm (cold-warm-cold) SST tripole pattern. It is also found that the North Pacific mode tends to enhance the WWCE SAT dipole through increasing PB-NAO<sup>-</sup> events and producing the WWCE SAT dipole component related to the PB-NAO<sup>+</sup> events because the PB and NAO<sup>+</sup> form a more zonal wave train in this case.</p>


Sign in / Sign up

Export Citation Format

Share Document