Tropical Pacific Decadal Variability Induced by Nonlinear Rectification of El Niño–Southern Oscillation

2020 ◽  
Vol 33 (17) ◽  
pp. 7289-7302
Author(s):  
Geon-Il Kim ◽  
Jong-Seong Kug

AbstractOn the basis of 32 long-term simulations with state-of-the-art coupled GCMs, we investigate the relationship between tropical Pacific decadal variability (TPDV) and El Niño–Southern Oscillation (ENSO). The first empirical orthogonal function (EOF) mode for the 11-yr moving sea surface temperatures (SSTs) in the coupled models is commonly characterized by El Niño–like decadal variability with Bjerknes air–sea interaction. However, the second EOF mode can be separated into two groups, such that 1) some models have a zonal dipole SST pattern and 2) other models are characterized by a meridional dipole pattern. We found that models with the zonal dipole pattern in the second mode tend to simulate strong ENSO amplitude and asymmetry in comparison with those of the other models. Also, the residual patterns, which are defined as the summation of El Niño and La Niña SST composite anomalies, are very similar to the decadal dipole pattern, which suggests that ENSO residuals can cause the dipole decadal variability. It is found that decadal modulation of ENSO variability in these models strongly depends on the phase of the dipole decadal variability. The decadal changes in ENSO residual correspond well with the decadal changes in the dipole pattern, and the nonlinear dynamic heating terms by ENSO anomalies are well matched with the decadal dipole pattern.

2013 ◽  
Vol 26 (18) ◽  
pp. 7280-7297 ◽  
Author(s):  
Tomomichi Ogata ◽  
Shang-Ping Xie ◽  
Andrew Wittenberg ◽  
De-Zheng Sun

Abstract The amplitude of El Niño–Southern Oscillation (ENSO) displays pronounced interdecadal modulations in observations. The mechanisms for the amplitude modulation are investigated using a 2000-yr preindustrial control integration from the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). ENSO amplitude modulation is highly correlated with the second empirical orthogonal function (EOF) mode of tropical Pacific decadal variability (TPDV), which features equatorial zonal dipoles in sea surface temperature (SST) and subsurface temperature along the thermocline. Experiments with an ocean general circulation model indicate that both interannual and decadal-scale wind variability are required to generate decadal-scale tropical Pacific temperature anomalies at the sea surface and along the thermocline. Even a purely interannual and sinusoidal wind forcing can produce substantial decadal-scale effects in the equatorial Pacific, with SST cooling in the west, subsurface warming along the thermocline, and enhanced upper-ocean stratification in the east. A mechanism is proposed by which residual effects of ENSO could serve to alter subsequent ENSO stability, possibly contributing to long-lasting epochs of extreme ENSO behavior via a coupled feedback with TPDV.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jialin Lin ◽  
Taotao Qian

AbstractThe El Nino-Southern Oscillation (ENSO) is the dominant interannual variability of Earth’s climate system and plays a central role in global climate prediction. Outlooks of ENSO and its impacts often follow a two-tier approach: predicting ENSO sea surface temperature anomaly in tropical Pacific and then predicting its global impacts. However, the current picture of ENSO global impacts widely used by forecasting centers and atmospheric science textbooks came from two earliest surface station datasets complied 30 years ago, and focused on the extreme phases rather than the whole ENSO lifecycle. Here, we demonstrate a new picture of the global impacts of ENSO throughout its whole lifecycle based on the rich latest satellite, in situ and reanalysis datasets. ENSO impacts are much wider than previously thought. There are significant impacts unknown in the previous picture over Europe, Africa, Asia and North America. The so-called “neutral years” are not neutral, but are associated with strong sea surface temperature anomalies in global oceans outside the tropical Pacific, and significant anomalies of land surface air temperature and precipitation over all the continents.


We review simple instabilities in linear theories of coupled atmosphere-ocean models in both bounded and unbounded ocean basins and describe the mechanisms for instability in these linear theories. We then review nonlinear coupled atmosphere-ocean simulations of the El Nino Southern Oscillation (ENSO) phenomenon and relate the instabilities seen in linear theory to the fully nonlinear ENSO simulations. We present a general discussion of the relation between instability and predictability in the ENSO problem and review some recent work on predictability in coupled models. Finally, we comment on some recent predictions in light of our discussion of predictability.


2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Aleksey Yu Sadekov ◽  
Raja Ganeshram ◽  
Laetitia Pichevin ◽  
Rose Berdin ◽  
Erin McClymont ◽  
...  

Nature ◽  
2003 ◽  
Vol 424 (6946) ◽  
pp. 271-276 ◽  
Author(s):  
Kim M. Cobb ◽  
Christopher D. Charles ◽  
Hai Cheng ◽  
R. Lawrence Edwards

Sign in / Sign up

Export Citation Format

Share Document