Exploratory Analysis of Upper-Ocean Heat Content and Sea Surface Temperature Underlying Tropical Cyclone Rapid Intensification in the Western North Pacific

2020 ◽  
Vol 33 (3) ◽  
pp. 1031-1050 ◽  
Author(s):  
Cheng-Hsiang Chih ◽  
Chun-Chieh Wu

AbstractThe statistical relationships between tropical cyclones (TCs) with rapid intensification (RI) and upper-ocean heat content (UOHC) and sea surface temperature (SST) from 1998 to 2016 in the western North Pacific are examined. RI is computed based on four best track datasets in the International Best Track Archive for Climate Stewardship (IBTrACS). The statistical analysis shows that the UOHC and SST are higher in the RI duration than in non-RI duration. However, TCs with high UOHC/SST do not necessarily experience RI. In addition, the UOHC and SST are lower in the storm inner-core region due to storm-induced ocean cooling, and the UOHC reduces more significantly than the SST along the passages of TCs in the lower-latitude regions. Moreover, most of the RI (non-RI) duration is associated with the higher (lower) UOHC, but this is not the case for the SST pattern. Meanwhile, the TC intensification rate during the RI period does not appear to be sensitive to the SST, but shows statistically significant differences in the UOHC. In addition, there is a statistically significant increasing trend in the UOHC underlying TCs from 1998 to 2016. It is also noted that the percentages of the TCs with RI show different polynomial and linear trends based on different calculations of the RI events and RI durations. Finally, it is shown that there is no statistically significant difference in the UOHC, SST, and the percentage of RI among the five categories of ENSO events (i.e., strong El Niño, weak El Niño, neutral, weak La Niña, and strong La Niña).

2008 ◽  
Vol 136 (9) ◽  
pp. 3288-3306 ◽  
Author(s):  
I-I. Lin ◽  
Chun-Chieh Wu ◽  
Iam-Fei Pun ◽  
Dong-Shan Ko

Abstract Category 5 cyclones are the most intense and devastating cyclones on earth. With increasing observations of category 5 cyclones, such as Hurricane Katrina (2005), Rita (2005), Mitch (1998), and Supertyphoon Maemi (2003) found to intensify on warm ocean features (i.e., regions of positive sea surface height anomalies detected by satellite altimeters), there is great interest in investigating the role ocean features play in the intensification of category 5 cyclones. Based on 13 yr of satellite altimetry data, in situ and climatological upper-ocean thermal structure data, best-track typhoon data of the U.S. Joint Typhoon Warning Center, together with an ocean mixed layer model, 30 western North Pacific category 5 typhoons that occurred during the typhoon season from 1993 to 2005 are systematically examined in this study. Two different types of situations are found. The first type is the situation found in the western North Pacific south eddy zone (SEZ; 21°–26°N, 127°–170°E) and the Kuroshio (21°–30°N, 127°–170°E) region. In these regions, the background climatological warm layer is relatively shallow (typically the depth of the 26°C isotherm is around 60 m and the upper-ocean heat content is ∼50 kJ cm−2). Therefore passing over positive features is critical to meet the ocean’s part of necessary conditions in intensification because the features can effectively deepen the warm layer (depth of the 26°C isotherm reaching 100 m and upper-ocean heat content is ∼110 kJ cm−2) to restrain the typhoon’s self-induced ocean cooling. In the past 13 yr, 8 out of the 30 category 5 typhoons (i.e., 27%) belong to this situation. The second type is the situation found in the gyre central region (10°–21°N, 121°–170°E) where the background climatological warm layer is deep (typically the depth of the 26°C isotherm is ∼105–120 m and the upper-ocean heat content is ∼80–120 kJ cm−2). In this deep, warm background, passing over positive features is not critical since the background itself is already sufficient to restrain the self-induced cooling negative feedback during intensification.


2007 ◽  
Vol 20 (22) ◽  
pp. 5497-5509 ◽  
Author(s):  
Kerry Emanuel

Abstract Revised estimates of kinetic energy production by tropical cyclones in the Atlantic and western North Pacific are presented. These show considerable variability on interannual-to-multidecadal time scales. In the Atlantic, variability on time scales of a few years and more is strongly correlated with tropical Atlantic sea surface temperature, while in the western North Pacific, this correlation, while still present, is considerably weaker. Using a combination of basic theory and empirical statistical analysis, it is shown that much of the variability in both ocean basins can be explained by variations in potential intensity, low-level vorticity, and vertical wind shear. Potential intensity variations are in turn factored into components related to variations in net surface radiation, thermodynamic efficiency, and average surface wind speed. In the Atlantic, potential intensity, low-level vorticity, and vertical wind shear strongly covary and are also highly correlated with sea surface temperature, at least during the period in which reanalysis products are considered reliable. In the Pacific, the three factors are not strongly correlated. The relative contributions of the three factors are quantified, and implications for future trends and variability of tropical cyclone activity are discussed.


2011 ◽  
Vol 26 (3) ◽  
pp. 371-387 ◽  
Author(s):  
Xiaodong Hong ◽  
Craig H. Bishop ◽  
Teddy Holt ◽  
Larry O’Neill

Abstract This paper examines the sensitivity of short-term forecasts of the western North Pacific subtropical high (WNPSH) and rainfall to sea surface temperature (SST) uncertainty using the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS). A comparison of analyzed SSTs with satellite observations of SST indicates that SST analysis errors are particularly pronounced on horizontal scales from 100 to 200 km, similar to the mesoscale eddy scales in the Kuroshio region. Since significant oceanic variations occur on these scales, it is of interest to examine the effects of representing this small-scale uncertainty with random, scale-dependent perturbations. An SST ensemble perturbation generation technique is used here that enables temporal and spatial correlations to be controlled and produces initial SST fields comparable to satellite observations. The atmospheric model develops large uncertainty in the Korea and Japan area due to the fluctuation in the horizontal pressure gradient caused by the location of the WNPSH. This, in turn, increases the variance of the low-level jet (LLJ) over southeast China, resulting in large differences in the moist transport flux from the tropical ocean and subsequent rainfall. Validation using bin-mean statistics shows that the ensemble forecast with the perturbed SST better distinguishes large forecast error variance from small forecast error variance. The results suggest that using the SST perturbation as a proxy for the ocean ensemble in a coupled atmosphere and ocean ensemble system is feasible and computationally efficient.


Sign in / Sign up

Export Citation Format

Share Document