scholarly journals Strengthened Linkage between November/December North Atlantic Oscillation and Subsequent January European Precipitation after the Late 1980s

2020 ◽  
Vol 33 (19) ◽  
pp. 8281-8300
Author(s):  
Yang Liu ◽  
Shengping He

AbstractThis work investigates the nonsynchronous relationship between the North Atlantic Oscillation (NAO) and winter European precipitation. The results indicate that the linkage between early-winter (November and December) NAO and the following January precipitation and atmospheric circulation over the North Atlantic and European sectors became statistically significant after the late 1980s. Before the late 1980s, January precipitation and atmospheric circulation are weakly correlated with early-winter NAO. After the late 1980s, by contrast, the positive phase of the early-winter NAO is generally followed by an anomalous meridional dipole pattern with barotropic structure over the North Atlantic, which provides conditions for more (less) precipitation south of Iceland (east of the Azores). Further analysis elucidates that this regime shift may be partly attributed to the change of early-winter NAO, which is concurrent with significant change in the intensity of the synoptic and low-frequency eddy interaction over the Atlantic–European sectors. Anomalous positive sea level pressure and geopotential height, along with zonal wind anomalies associated with a positive early-winter NAO over the North Atlantic, are more significant and extend more northeastward after the late 1980s, which may be induced by an intensified transient eddy feedback after the late 1980s, as well as the enhanced storm-track activity over the North Atlantic. Thus, early-winter NAO can induce significant ocean temperature anomalies in the North Atlantic after the late 1980s, which extend downward into the middle parts of the thermocline and persist until the following January to trigger NAO-like atmospheric circulation patterns. Analyses from the Community Earth System Model large ensemble simulations indicate the effects of internal climate variability on such a strengthened linkage.

2017 ◽  
Author(s):  
Lars Norin ◽  
Abhay Devasthale ◽  
Tristan S. L'Ecuyer

Abstract. For a high latitude country like Sweden snowfall is an important contributor to the regional water cycle. Furthermore, snowfall impacts surface properties, affects atmospheric thermodynamics, has implications for traffic and logistics management, disaster preparedness, and also impacts climate through changes in surface albedo and turbulent heat fluxes. For Sweden it has been shown that large-scale atmospheric circulation patterns, or weather states, are important for precipitation variability. Although the link between atmospheric circulation patterns and precipitation has been investigated for rainfall there are no studied focused on the sensitivity of snowfall to weather states over Sweden. In this work we investigate the response of snowfall to eight selected weather states. These weather states consist of four dominant wind directions together with cyclonic and anti-cyclonic circulation patterns and enhanced positive and negative phases of the North Atlantic oscillation. The presented analysis is based on multiple data sources, such as ground-based radar measurements, satellite observations, spatially-interpolated in situ observations, and reanalysis data. The data from these sources converge to underline the sensitivity of falling snow over Sweden to the different weather states. In this paper we examine both average snowfall intensities and snowfall accumulations associated with the different weather states. It is shown that even though the heaviest snowfall intensities occur during conditions with winds from the southwest, the largest contribution to snowfall accumulation arrives from winds from the southeast. Large differences in snowfall due to variations in the North Atlantic oscillation are shown as well as a strong effect of cyclonic and anti-cyclonic circulation patterns. Satellite observations are used to reveal the vertical structures of snowfall during the different weather states.


2017 ◽  
Vol 10 (9) ◽  
pp. 3249-3263 ◽  
Author(s):  
Lars Norin ◽  
Abhay Devasthale ◽  
Tristan S. L'Ecuyer

Abstract. For a high-latitude country like Sweden snowfall is an important contributor to the regional water cycle. Furthermore, snowfall impacts surface properties, affects atmospheric thermodynamics, has implications for traffic and logistics management, disaster preparedness, and also impacts climate through changes in surface albedo and turbulent heat fluxes. For Sweden it has been shown that large-scale atmospheric circulation patterns, or weather states, are important for precipitation variability. Although the link between atmospheric circulation patterns and precipitation has been investigated for rainfall there are no studies focused on the sensitivity of snowfall to weather states over Sweden.In this work we investigate the response of snowfall to eight selected weather states. These weather states consist of four dominant wind directions together with cyclonic and anticyclonic circulation patterns and enhanced positive and negative phases of the North Atlantic Oscillation. The presented analysis is based on multiple data sources, such as ground-based radar measurements, satellite observations, spatially interpolated in situ observations, and reanalysis data. The data from these sources converge to underline the sensitivity of falling snow over Sweden to the different weather states.In this paper we examine both average snowfall intensities and snowfall accumulations associated with the different weather states. It is shown that, even though the heaviest snowfall intensities occur during conditions with winds from the south-west, the largest contribution to snowfall accumulation arrives with winds from the south-east. Large differences in snowfall due to variations in the North Atlantic Oscillation are shown as well as a strong effect of cyclonic and anticyclonic circulation patterns. Satellite observations are used to reveal the vertical structures of snowfall during the different weather states.


2012 ◽  
Vol 69 (12) ◽  
pp. 3763-3787 ◽  
Author(s):  
Dehai Luo ◽  
Jing Cha

Abstract In this paper, precursors to the North Atlantic Oscillation (NAO) and its transitions are investigated to understand the dynamical cause of the interdecadal NAO variability from dominant negative (NAO−) events during 1950–77 (P1) to dominant positive (NAO+) events during 1978–2010 (P2). It is found that the phase of the NAO event depends strongly on the latitudinal position of the North Atlantic jet (NAJ) prior to the NAO onset. The NAO− (NAO+) events occur frequently when the NAJ core prior to the NAO onset is displaced southward (northward), as the situation within P1 (P2). Thus, the northward (southward) shift of the NAJ from its mean position is a precursor to the NAO+ (NAO−) event. This finding is further supported by results obtained from a weakly nonlinear model. Furthermore, the model results show that, when the Atlantic mean zonal wind exceeds a critical strength under which the dipole anomaly prior to the NAO onset is stationary, in situ NAO− (NAO+) events, which are events not preceded by opposite events, can occur frequently during P1 (P2) when the Atlantic storm track is not too strong. This mean zonal wind condition is easily satisfied during P1 and P2. However, when the Atlantic storm track (mean zonal wind) prior to the NAO onset is markedly intensified (weakened), the NAO event can undergo a transition from one phase to another, especially in a relatively strong background westerly wind, the Atlantic storm track has to be strong enough to produce a phase transition.


2019 ◽  
Vol 32 (22) ◽  
pp. 7697-7712 ◽  
Author(s):  
Yu Nie ◽  
Hong-Li Ren ◽  
Yang Zhang

Abstract Considerable progress has been made in understanding the internal eddy–mean flow feedback in the subseasonal variability of the North Atlantic Oscillation (NAO) during winter. Using daily atmospheric and oceanic reanalysis data, this study highlights the role of extratropical air–sea interaction in the NAO variability during autumn when the daily sea surface temperature (SST) variability is more active and eddy–mean flow interactions are still relevant. Our analysis shows that a horseshoe-like SST tripolar pattern in the North Atlantic Ocean, marked by a cold anomaly in the Gulf Stream and two warm anomalies to the south of the Gulf Stream and off the western coast of northern Europe, can induce a quasi-barotropic NAO-like atmospheric response through eddy-mediated processes. An initial southwest–northeast tripolar geopotential anomaly in the North Atlantic forces this horseshoe-like SST anomaly tripole. Then the SST anomalies, through surface heat flux exchange, alter the spatial patterns of the lower-tropospheric temperature and thus baroclinicity anomalies, which are manifested as the midlatitude baroclinicity shifted poleward and reduced baroclinicity poleward of 70°N. In response to such changes of the lower-level baroclinicity, anomalous synoptic eddy generation, eddy kinetic energy, and eddy momentum forcing in the midlatitudes all shift poleward. Meanwhile, the 10–30-day low-frequency anticyclonic wave activities in the high latitudes decrease significantly. We illustrate that both the latitudinal displacement of midlatitude synoptic eddy activities and intensity variation of high-latitude low-frequency wave activities contribute to inducing the NAO-like anomalies.


2020 ◽  
Author(s):  
Julien Chartrand ◽  
Francesco Salvatore Rocco Pausata

Abstract. The North Atlantic Oscillation (NAO) affects atmospheric variability from eastern North America to Europe. Although the link between the NAO and winter precipitations in the eastern North America have been the focus of previous work, only few studies have hitherto provided clear physical explanations on these relationships. In this study we revisit and extend the analysis of the effect of the NAO on winter precipitations over a large domain covering southeast Canada and the northeastern United States. Furthermore, here we use the recent ERA5 reanalysis dataset (1979–2018), which currently has the highest available horizontal resolution for a global reanalysis (0.25°), to track extratropical cyclones to delve into the physical processes behind the relationship between NAO and precipitation, snowfall, snowfall-to-precipitation ratio (S/P), and snow cover depth anomalies in the region. In particular, our results show that positive NAO phases are associated with less snowfall over a wide region covering Nova Scotia, New England and the Mid-Atlantic of the United States relative to negative NAO phases. Henceforth, a significant negative correlation is also seen between S/P and the NAO over this region. This is due to a decrease (increase) in cyclogenesis of coastal storms near the United States east coast during positive (negative) NAO phases, as well as a northward (southward) displacement of the mean storm track over North America.


2012 ◽  
Vol 12 (1) ◽  
pp. 3131-3167 ◽  
Author(s):  
F. S. R. Pausata ◽  
L. Pozzoli ◽  
E. Vignati ◽  
F. J. Dentener

Abstract. Ozone pollution represents a serious health and environmental problem. While ozone pollution is mostly produced by photochemistry in summer, elevated ozone concentrations can also be influenced by long range transport driven by the atmospheric circulation and stratospheric ozone intrusions. We analyze the role of large scale atmospheric circulation variability in the North Atlantic basin in determining surface ozone concentrations. Here, we show, using ground station measurements and a coupled atmosphere-chemistry model simulation for the period 1980–2005, that the North Atlantic Oscillation (NAO) does affect surface ozone concentrations – on average, over 10 ppbv on the monthly mean in southwestern, central and northern Europe – during all seasons except fall. The commonly used NAO index is able to capture the link existing between atmospheric dynamics and surface ozone concentrations in winter and spring but it fails in summer. We find that the first Principal Component, computed from the time variation of the sea level pressure (SLP) field, detects the atmosphere circulation/ozone relationship not only in winter and spring but also during summer, when the atmospheric circulation weakens and regional photochemical processes peak. The first Principal Component of the SLP field could be used as a tool to identify areas more exposed to forthcoming ozone pollution events. Finally, our results suggest that the increasing baseline ozone in western and northern Europe during the 1990s could be related to the prevailing phase of the NAO in that period.


2015 ◽  
Vol 72 (3) ◽  
pp. 1152-1173 ◽  
Author(s):  
Dehai Luo ◽  
Yao Yao ◽  
Aiguo Dai

Abstract Both the positive and negative phases of the North Atlantic Oscillation (NAO+ and NAO−, respectively) and atmospheric blocking in the Euro-Atlantic sector reflect synoptic variability over the region and thus are intrinsically linked. This study examines their relationship from a decadal change perspective. Since the winter-mean NAO index is defined as a time average of instantaneous NAO indices over the whole winter, it is unclear how the activity of European blocking (EB) events can be related to the variation of the positive mean NAO index. Here, this question is examined by dividing the winter period 1978–2011 into two decadal epochs: 1978–94 (P1) with an increasing and high NAO index and 1995–2011 (P2) with a decreasing and low NAO index. Using atmospheric reanalysis data, it is shown that there are more intense and persistent EB events in eastern Europe during P1 than during P2, while the opposite is true for western Europe. It is further shown that there are more NAO+ (NAO−) events during P1 (P2). The EB events associated with NAO+ events extend more eastward and are associated with stronger Atlantic mean zonal wind and weaker western Atlantic storm track during P1 than during P2, but EB events associated with NAO− events increase in western Europe under opposite Atlantic conditions during P2. Thus, the increase in the number of individual NAO+ (NAO−) events results in more EB events in eastern (western) Europe during P1 (P2). The EB change is also associated with the increased frequency of NAO− to NAO+ (NAO+ to NAO−) transition events.


Sign in / Sign up

Export Citation Format

Share Document