How Were the Eastward-Moving Heavy Rainfall Events from the Tibetan Plateau to the Lower Reaches of the Yangtze River Enhanced?

2021 ◽  
Vol 34 (2) ◽  
pp. 607-620
Author(s):  
Yang Zhao ◽  
Deliang Chen ◽  
Yi Deng ◽  
Seok-Woo Son ◽  
Xiang Wang ◽  
...  

AbstractThis study investigates eastward-moving summer heavy rainfall events in the lower reaches of the Yangtze River (LRYR), which are associated with the Tibetan Plateau (TP) vortices. On the basis of rainfall data from gauges and additional atmospheric data from ERA-Interim, the dynamic and thermodynamic effects of moisture transport and diabatic heating are estimated to determine the physical mechanisms that support the eastward-moving heavy rainfall events. As the rainband moves eastward, it is accompanied by anomalous cyclonic circulation in the upper and middle troposphere and enhanced vertical motion throughout the troposphere. In particular, the rainfall region is located in the fore of the upper-level trough, which is ideal for baroclinic organization of the convective system and further development of the eastward-moving vortex. The large atmospheric apparent heat source (Q1) also contributes for lifting the lower-level air into the upper atmosphere and for enhancing the low-level convective motion and convergence during the heavy rainfall process. Piecewise potential vorticity inversion further verifies the crucial role that the diabatic heating played in developing the anomalous geopotential height favorable for the enhanced rainfall. The combined action of the dynamic and thermodynamic processes, as well as the rich moisture supply from the seas, synergistically sustained and enhanced the eastward-moving rainfall.

2019 ◽  
Vol 32 (15) ◽  
pp. 4699-4714 ◽  
Author(s):  
Jinghua Chen ◽  
Xiaoqing Wu ◽  
Yan Yin ◽  
Chunsong Lu ◽  
Hui Xiao ◽  
...  

ABSTRACT The influence of surface heat fluxes on the generation and development of cloud and precipitation and its relative importance to the large-scale circulation patterns are investigated via cloud-resolving model (CRM) simulations over the Tibetan Plateau (TP) during boreal summer. Over the lowland (e.g., along the middle and lower reaches of the Yangtze River), the dynamical and thermal properties of the atmosphere take more responsibility than the surface heat fluxes for the triggering of heavy rainfall events. However, the surface thermal driving force is a necessary criterion for the triggering of heavy rainfall in the eastern and western TP (ETP and WTP). Strong surface heat fluxes can trigger shallow convections in the TP. Furthermore, moisture that is mainly transported from the southern tropical ocean has a greater influence on the heavy rainfall events of the WTP than those of the ETP. Cloud microphysical processes are substantially less active and heavy rainfall cannot be produced when surface heat fluxes are weakened by half in magnitude over the TP. In addition, surface heating effects are largely responsible for the high occurrence frequency of convection during the afternoon, and the cloud tops of convective systems show a positive relationship with the intensity of surface heat fluxes.


2021 ◽  
pp. 1-44
Author(s):  
Yifeng Cheng ◽  
Lu Wang ◽  
Tim Li

AbstractLarge-scale circulation anomalies associated with 10-30-day filtered persistent heavy rainfall events (PHREs) over the middle and lower reaches of the Yangtze River Valley (MLYV) in boreal summer for the period of 1961-2017 were investigated. Two distinct types of PHREs were identified based on configurations of anomalies in western Pacific subtropical high (WPSH) and South Asian High (SAH) during the peak wet phase. One type named as PSAH is characterized by eastward extension of the SAH while the other named as NSAH is featured by westward retreat of the SAH, and they both exhibit westward extension of the WPSH. Both types of PHREs are dominated by Mei-yu frontal systems. The lower-level circulation anomalies play a crucial role in initiating rainfall but through different processes. Prior to rainfall occurrence, a strong anticyclonic circulation anomaly is over the western North Pacific (WNP) for the PSAH events and the related southwesterly wind anomaly prevails over the south-eastern China, which advects moisture into the MLYV, moistens the boundary layer, and induces atmospheric convective instability. For the NSAH events, the WNP anticyclonic circulation is weak while a strong northerly wind is observed north of the MLYV. It brings cold air mass southward, favoring initiating frontal rainfall over the MLYV. The formation of upper-level circulation anomalies over the MLYV is primarily due to the shift of anomalous circulations from mid-high latitudes. After the rainfall generation, the precipitation would influence the lower- and upper-level circulation anomalies.


Sign in / Sign up

Export Citation Format

Share Document