Analysis of the Atmospheric Water Cycle for the Laurentian Great Lakes Region using CMIP6 models

2021 ◽  
pp. 1-47
Author(s):  
Samar Minallah ◽  
Allison L. Steiner

AbstractThis study evaluates the historical climatology and future changes of the atmospheric water cycle for the Laurentian Great Lakes region using 15 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. While the models have unique seasonal characteristics in the historical (1981 – 2010) simulations, common patterns emerge by the mid-century SSP2-4.5 scenario (2041 – 2070), including a prevalent shift in the precipitation seasonal cycle with summer drying and wetter winter-spring months, and a ubiquitous increase in the magnitudes of convective precipitation, evapotranspiration, and moisture inflow into the region. The seasonal cycle of moisture flux convergence is amplified (i.e., the magnitude of winter convergence and summer divergence increases), which is the primary driver of future total precipitation changes. Precipitation recycling ratio is also projected to decline in summer and increase in winter by the mid-century, signifying a larger contribution of the regional moisture (via evapotranspiration) to total precipitation in the colder months. Many models (6/15) do not include representation of the Great Lakes, while others (4/15) have major inconsistencies in how the lakes are simulated both in terms of spatial representation and treatment of lake processes. In models with some lake presence, contribution of lake grid cells to the regional evapotranspiration magnitude can be more than 50% in winter. In future, winter months have a larger increase in evaporation over water surfaces than the surrounding land, which corroborates past findings of sensitivity of deep lakes to climate warming and highlights the importance of lake representation in these models for reliable regional hydroclimatic assessments.

2020 ◽  
Author(s):  
Fumiaki Ogawa ◽  
Thomas Spengler

<p>      Midlatitude oceanic fronts play an important role in the air-sea coupled weather and climate system. Created by the confluence of warm and cool oceanic western boundary currents, the strong sea-surface temperature (SST) gradient is maintained throughout the year. The climatological mean turbulent air-sea heat exchange maximizes along these SST fronts and collocates with the major atmospheric storm tracks. A recent study identified that the air-sea heat exchange along the SST front mainly occurs on sub-weekly time scales, associated with synoptic atmospheric disturbances. This implies a crucial role of air-sea moisture exchange along the SST fronts on the atmospheric water cycle through the intensification of atmospheric cyclones and the associated precipitation.  </p><p>      In this study, we investigate this influence of the SST front on the atmospheric water cycle by analyzing the atmospheric response to different prescribed SST in the Atmospheric general circulation model For the Earth Simulator (AFES). Changing the latitude of the prescribed zonally symmetric SST in aqua-planet configuration, we find a distinctive response in convective and large-scale precipitation, surface latent and sensible heat fluxes, as well as diabatic heating and moistening with respect to the latitude of SST front. Upward surface latent heat flux and convective precipitation always maximize along the equatorward flank of SST front. On the other hand, large-scale precipitation is always located on the poleward flank of the SST front, in correspondence with the maximum atmospheric moisture flux convergence. The moisture flux convergence is mainly associated with midlatitude eddies and not with the time mean transport. This highlights the influence of mid-latitude SST fronts on the atmospheric water cycle through the organization of atmospheric storm track.</p>


2021 ◽  
Vol 270 ◽  
pp. 107174
Author(s):  
R.M. Doyle ◽  
Z. Liu ◽  
J.T. Walker ◽  
R. Hladyniuk ◽  
K.A. Moser ◽  
...  

1995 ◽  
Vol 21 ◽  
pp. 383-386 ◽  
Author(s):  
R.A. Assel ◽  
D.M. Robertson ◽  
M.H. Hoff ◽  
J.H. Selgeby

Long-term ice records (1823-1994) from six sites in different parts of the Laurentian Great Lakes region were used to show the type and general timing of climatic changes throughout the region. The general timing of both freeze-up and ice loss varies and is driven by local air temperatures, adjacent water bodies and mixing, and site morphometry. Grand Traverse Bay and Buffalo Harbor represent deeper-water environments affected by mixing of off-shore waters; Chequamegon Bay, Menominee, Lake Mendota, and Toronto Harbor represent relatively shallow-water, protected environments. Freeze-up dates gradually became later and ice-loss dates gradually earlier from the start of records to the 1890s in both environments, marking the end of the “Little lce Age”. After this, freeze-up dates remained relatively constant, suggesting little change in early-winter air temperatures during the 20th century. Ice-loss dates at Grand Traverse Bay and Baffalo Harbor but not at the other sites became earlier during the 1940s and 1970s and became later during the 1960s. The global warming of the 1980s was marked by a trend toward earlier ice-loss dates in both environments.


2018 ◽  
Vol 99 (11) ◽  
pp. 2341-2359 ◽  
Author(s):  
M. J. Roberts ◽  
P. L. Vidale ◽  
C. Senior ◽  
H. T. Hewitt ◽  
C. Bates ◽  
...  

AbstractThe time scales of the Paris Climate Agreement indicate urgent action is required on climate policies over the next few decades, in order to avoid the worst risks posed by climate change. On these relatively short time scales the combined effect of climate variability and change are both key drivers of extreme events, with decadal time scales also important for infrastructure planning. Hence, in order to assess climate risk on such time scales, we require climate models to be able to represent key aspects of both internally driven climate variability and the response to changing forcings. In this paper we argue that we now have the modeling capability to address these requirements—specifically with global models having horizontal resolutions considerably enhanced from those typically used in previous Intergovernmental Panel on Climate Change (IPCC) and Coupled Model Intercomparison Project (CMIP) exercises. The improved representation of weather and climate processes in such models underpins our enhanced confidence in predictions and projections, as well as providing improved forcing to regional models, which are better able to represent local-scale extremes (such as convective precipitation). We choose the global water cycle as an illustrative example because it is governed by a chain of processes for which there is growing evidence of the benefits of higher resolution. At the same time it comprises key processes involved in many of the expected future climate extremes (e.g., flooding, drought, tropical and midlatitude storms).


2012 ◽  
Vol 161 ◽  
pp. 350-357 ◽  
Author(s):  
James G. Wiener ◽  
Mark B. Sandheinrich ◽  
Satyendra P. Bhavsar ◽  
Joseph R. Bohr ◽  
David C. Evers ◽  
...  

Wetlands ◽  
2015 ◽  
Vol 35 (5) ◽  
pp. 1013-1019 ◽  
Author(s):  
Carol A. Johnston

2014 ◽  
Vol 164 ◽  
pp. 544-550 ◽  
Author(s):  
Margaret R. Neff ◽  
Satyendra P. Bhavsar ◽  
Eric Braekevelt ◽  
Michael T. Arts

2012 ◽  
Vol 38 ◽  
pp. 1-6 ◽  
Author(s):  
Maureen G. Walsh ◽  
Brent T. Boscarino ◽  
Jérôme Marty ◽  
Ora E. Johannsson

Sign in / Sign up

Export Citation Format

Share Document