scholarly journals Seasonal Prediction of Tropical Cyclones over the North Atlantic and Western North Pacific

2021 ◽  
pp. 1-42
Author(s):  
Kevin I. Hodges ◽  
Antje Weisheimer

Abstract In this study, Tropical Cyclones (TC) over the Western North Pacific (WNP) and North Atlantic (NA) basins are analysed in seasonal forecasting models from five European modelling centres. Most models are able to capture the observed seasonal cycle of TC frequencies over both basins; however, large differences for numbers and spatial track densities are found. In agreement with previous studies, TC numbers are often underestimated, which is likely related to coarse model resolutions. Besides shortcomings in TC characteristics, significant positive skill (deterministic and probabilistic) in predicting TC numbers and accumulated cyclone energy is found over both basins. Whereas the predictions of TC numbers over the WNP basin are mostly unreliable, most seasonal forecast provide reliable predictions for the NA basin. Besides positive skill over the entire NA basin, all seasonal forecasting models are skillful in predicting the interannual TC variability over a region covering the Caribbean and North American coastline, suggesting that the models carry useful information, e.g. for adaptation and mitigation purposes ahead of the upcoming TC season. However, skill in all forecast models over a smaller region centred along the Asian coastline is smaller compared to their skill in the entire WNP basin.

2016 ◽  
Vol 47 (9-10) ◽  
pp. 3063-3075 ◽  
Author(s):  
Woosuk Choi ◽  
Chang-Hoi Ho ◽  
Chun-Sil Jin ◽  
Jinwon Kim ◽  
Song Feng ◽  
...  

2020 ◽  
Author(s):  
Kevin Hodges ◽  
Daniel Befort ◽  
Antje Weisheimer

<p>This study assesses the representation of Tropical Cyclones (TC) in an ensemble of seasonal forecast models from five different centres (ECMWF, UK Met Office, DWD, CMCC, Météo-France). Northern Hemispheric Tropical Cyclones are identified using a widely applied objective Tropical Cyclone tracking algorithm based on relative vorticity fields. Analyses for three different aspects are carried out: 1) assessment of the skill of the ensemble to predict  the TC frequencies over different ocean basins, 2) analyse the dependency between the model's ability to represent TCs and large-scale biases and 3) assess the impact of stochastic physics and horizontal resolution on TC frequency.</p><p>For the July to October season all seasonal forecast models initialized in June are skilful in predicting the observed inter-annual variability of TC frequency over the North Atlantic (NA). Similarly, the models initialized in May show significant skill over the Western North Pacific (WNP) for the season from June to October. Further to these significant positive correlations over the NA, it is found that most models are also able to discriminate between inactive and active seasons over this region. However, despite these encouraging results, especially  for skill over the NA, most models suffer from large biases. These biases are not only related to biases in the large-scale circulation but also to the representation of intrinsic model uncertainties and the relatively coarse resolution of current seasonal forecasts. At ECMWF model uncertainty is accounted for by the use of stochastic physics, which has been shown to improve forecasts on seasonal time-scales in previous studies. Using a set of simulations conducted with the ECMWF SEAS5 model, the effects of stochastic physics and resolution on the representation of Tropical Cyclones on seasonal time-scales are assessed. Including stochastic physics increases the number of TCs over all ocean basins, but especially over the North Atlantic and Western North Pacific.</p>


2008 ◽  
Vol 136 (11) ◽  
pp. 4527-4540 ◽  
Author(s):  
Tsing-Chang Chen ◽  
Shih-Yu Wang ◽  
Ming-Cheng Yen ◽  
Adam J. Clark

Abstract It has been observed that the percentage of tropical cyclones originating from easterly waves is much higher in the North Atlantic (∼60%) than in the western North Pacific (10%–20%). This disparity between the two ocean basins exists because the majority (71%) of tropical cyclogeneses in the western North Pacific occur in the favorable synoptic environments evolved from monsoon gyres. Because the North Atlantic does not have a monsoon trough similar to the western North Pacific that stimulates monsoon gyre formation, a much larger portion of tropical cyclogeneses than in the western North Pacific are caused directly by easterly waves. This study also analyzed the percentage of easterly waves that form tropical cyclones in the western North Pacific. By carefully separating easterly waves from the lower-tropospheric disturbances generated by upper-level vortices that originate from the tropical upper-tropospheric trough (TUTT), it is observed that 25% of easterly waves form tropical cyclones in this region. Because TUTT-induced lower-tropospheric disturbances often become embedded in the trade easterlies and resemble easterly waves, they have likely been mistakenly identified as easterly waves. Inclusion of these “false” easterly waves in the “true” easterly wave population would result in an underestimation of the percentage of easterly waves that form tropical cyclones, because the TUTT-induced disturbances rarely stimulate tropical cyclogenesis. However, an analysis of monsoon gyre formation mechanisms over the western North Pacific reveals that 82% of monsoon gyres develop through a monsoon trough–easterly wave interaction. Thus, it can be inferred that 58% (i.e., 82% × 71%) of tropical cyclones in this region are an indirect result of easterly waves. Including the percentage of tropical cyclones that form directly from easterly waves (∼25%), it is found that tropical cyclones formed directly and indirectly from easterly waves account for over 80% of tropical cyclogeneses in the western North Pacific. This is more than the percentage that has been documented by previous studies in the North Atlantic.


2014 ◽  
Vol 29 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Kekuan Chu ◽  
Zhe-Min Tan

Abstract Annular hurricanes, characterized by annular structure, are a subset of mature-stage intense tropical cyclones, and they tend to be stronger and persist longer than average tropical cyclones. The characteristics of annular hurricanes in the North Atlantic and eastern-central North Pacific Oceans are well documented by Knaff et al. However, little is known about the annular typhoons in the western North Pacific (WNP). This study investigates the general features of annular typhoons in the WNP based on a 20-yr analysis (1990–2009) of global storm-centered infrared brightness temperature and passive microwave satellite datasets. Similar to annular hurricanes, annular typhoons also only form under a specific combination of environmental conditions, resulting in a quite low occurrence rate (~4%), and only 12 annular typhoons occur during this period. The concentric eyewall replacement is one effective pathway to annular typhoon formation. Three annular typhoons experienced the concentric eyewall replacement within 24 h prior to their annular phases during this period. There are two seedbeds, located east of Taiwan and in the central WNP, for annular typhoon formation within a narrow zonal belt (20°–30°N). The former is conducive to the landfall of annular typhoons, in particular six of the nine annular typhoons that formed in this region eventually made landfall. Because the average time interval between landfall of the annular typhoons and the end of their annular phase is relatively short, about 30 h, they can maintain near-peak intensities and hit the landfalling areas with record intensities. They present a unique threat to eastern Asia but have received little attention from the scientific community so far.


2020 ◽  
Vol 35 (2) ◽  
pp. 451-466
Author(s):  
Melanie Bieli ◽  
Adam H. Sobel ◽  
Suzana J. Camargo ◽  
Michael K. Tippett

Abstract This paper introduces a logistic regression model for the extratropical transition (ET) of tropical cyclones in the North Atlantic and the western North Pacific, using elastic net regularization to select predictors and estimate coefficients. Predictors are chosen from the 1979–2017 best track and reanalysis datasets, and verification is done against the tropical/extratropical labels in the best track data. In an independent test set, the model skillfully predicts ET at lead times up to 2 days, with latitude and sea surface temperature as its most important predictors. At a lead time of 24 h, it predicts ET with a Matthews correlation coefficient of 0.4 in the North Atlantic, and 0.6 in the western North Pacific. It identifies 80% of storms undergoing ET in the North Atlantic and 92% of those in the western North Pacific. In total, 90% of transition time errors are less than 24 h. Select examples of the model’s performance on individual storms illustrate its strengths and weaknesses. Two versions of the model are presented: an “operational model” that may provide baseline guidance for operational forecasts and a “hazard model” that can be integrated into statistical TC risk models. As instantaneous diagnostics for tropical/extratropical status, both models’ zero lead time predictions perform about as well as the widely used cyclone phase space (CPS) in the western North Pacific and better than the CPS in the North Atlantic, and predict the timings of the transitions better than CPS in both basins.


2020 ◽  
Vol 101 (8) ◽  
pp. E1301-E1303 ◽  
Author(s):  
James B. Elsner

Abstract In a 2008 paper, using satellite-derived wind speed estimates from tropical cyclones over the 25-yr period 1981–2006, we showed the strongest tropical cyclones getting stronger. We related the increasing intensity to rising ocean temperatures consistent with theory. Oceans have continued to warm since that paper was published, so the intensity of the strongest cyclones should have continued upward as well. Here I show that this is the case, with increases in the upper-quantile intensities of global tropical cyclones amounting to between 3.5% and 4.5% in the period 2007–19 relative to the earlier base period (1981–2006). All basins individually show upward intensity trends for at least one upper quantile considered, with the North Atlantic and western North Pacific basins showing the steepest and most consistent trends across the quantiles.


2014 ◽  
Vol 29 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Elizabeth A. Ritchie ◽  
Kimberly M. Wood ◽  
Oscar G. Rodríguez-Herrera ◽  
Miguel F. Piñeros ◽  
J. Scott Tyo

Abstract The deviation-angle variance technique (DAV-T), which was introduced in the North Atlantic basin for tropical cyclone (TC) intensity estimation, is adapted for use in the North Pacific Ocean using the “best-track center” application of the DAV. The adaptations include changes in preprocessing for different data sources [Geostationary Operational Environmental Satellite-East (GOES-E) in the Atlantic, stitched GOES-E–Geostationary Operational Environmental Satellite-West (GOES-W) in the eastern North Pacific, and the Multifunctional Transport Satellite (MTSAT) in the western North Pacific], and retraining the algorithm parameters for different basins. Over the 2007–11 period, DAV-T intensity estimation in the western North Pacific results in a root-mean-square intensity error (RMSE, as measured by the maximum sustained surface winds) of 14.3 kt (1 kt ≈ 0.51 m s−1) when compared to the Joint Typhoon Warning Center best track, utilizing all TCs to train and test the algorithm. The RMSE obtained when testing on an individual year and training with the remaining set lies between 12.9 and 15.1 kt. In the eastern North Pacific the DAV-T produces an RMSE of 13.4 kt utilizing all TCs in 2005–11 when compared with the National Hurricane Center best track. The RMSE for individual years lies between 9.4 and 16.9 kt. The complex environment in the western North Pacific led to an extension to the DAV-T that includes two different radii of computation, producing a parametric surface that relates TC axisymmetry to intensity. The overall RMSE is reduced by an average of 1.3 kt in the western North Pacific and 0.8 kt in the eastern North Pacific. These results for the North Pacific are comparable with previously reported results using the DAV for the North Atlantic basin.


2012 ◽  
Vol 140 (3) ◽  
pp. 774-788 ◽  
Author(s):  
Carl J. Schreck ◽  
John Molinari ◽  
Anantha Aiyyer

Abstract This study investigates the number of tropical cyclone formations that can be attributed to the enhanced convection from equatorial waves within each basin. Tropical depression (TD)-type disturbances (i.e., easterly waves) were the primary tropical cyclone precursors over the Northern Hemisphere basins, particularly the eastern North Pacific and the Atlantic. In the Southern Hemisphere, however, the number of storms attributed to TD-type disturbances and equatorial Rossby waves were roughly equivalent. Equatorward of 20°N, tropical cyclones formed without any equatorial wave precursor most often over the eastern North Pacific and least often over the western North Pacific. The Madden–Julian oscillation (MJO) was an important tropical cyclone precursor over the north Indian, south Indian, and western North Pacific basins. The MJO also affected tropical cyclogenesis by modulating the amplitudes of higher-frequency waves. Each wave type reached the attribution threshold 1.5 times more often, and tropical cyclogenesis was 3 times more likely, within positive MJO-filtered rainfall anomalies than within negative anomalies. The greatest MJO modulation was observed for storms attributed to Kelvin waves over the north Indian Ocean. The large rainfall rates associated with tropical cyclones can alter equatorial wave–filtered anomalies. This study quantifies the contamination over each basin. Tropical cyclones contributed more than 20% of the filtered variance for each wave type over large potions of every basin except the South Pacific. The largest contamination, exceeding 60%, occurred for the TD band near the Philippines. To mitigate the contamination, the tropical cyclone–related anomalies were removed before filtering in this study.


Sign in / Sign up

Export Citation Format

Share Document