scholarly journals Upstream Subtropical Signals Preceding the Asian Summer Monsoon Circulation

2004 ◽  
Vol 17 (21) ◽  
pp. 4213-4229 ◽  
Author(s):  
Song Yang ◽  
K-M. Lau ◽  
S-H. Yoo ◽  
J. L. Kinter ◽  
K. Miyakoda ◽  
...  

Abstract In this study, the authors address several issues with respect to the antecedent signals of the large-scale Asian summer monsoon that were earlier identified by Webster and Yang. In particular, they revisit the changes in the subtropical upper-tropospheric westerlies preceding the monsoon, depict the detailed structure of the monsoon's antecedent signals, and investigate the physical processes from the signals to the monsoon. They also explore the teleconnection of these signals to various large-scale climate phenomena and emphasize the importance of the upstream location of the signals relative to the Tibetan Plateau and the monsoon. Before a strong (weak) Asian summer monsoon, the 200-mb westerlies over subtropical Asia are weak (strong) during the previous winter and spring. A significant feature of these signals is represented by the variability of the Middle East jet stream whose changes are linked to the Arctic Oscillation, North Atlantic Oscillation, El Niño–Southern Oscillation, and other climate phenomena. When this jet stream intensifies and shifts southeastward, cold air intrudes frequently from eastern Europe into the Middle East and southwestern Asia. As a result, in subtropical Asia, snow and precipitation increase, the ground wetness increases, and surface temperature decreases. A strengthening Middle East jet stream is also accompanied by increases in both stationary wave activity flux and higher-frequency eddy activities. The Tibetan Plateau acts to block these westerly activities propagating eastward and increase the persistence of the low-temperature anomalies, which in turn prolongs the atmospheric signals from winter to spring. A strong link is found between the persistent low-temperature anomalies and the decrease in geopotential height over southern Asia, including the Tibetan Plateau, in spring. The latter indicates a late establishment of the South Asian high, and implies a delay in the atmospheric transition from winter to summer conditions and in the development of the summer monsoon. The preceding scenario for a strong Middle East jet stream and a weaker Asian monsoon can be applied accordingly for the discussion of the physical processes from a weak jet stream to a strong monsoon. The current results of the relationship between the extratropical process and Asian monsoon resemble several features of the tropical–extratropical interaction mechanism for the tropospheric biennial oscillation (TBO). While the role of tropical heating is emphasized in the TBO mechanism, compared to the variability of the sea surface temperature related to El Niño–Southern Oscillation, the extratropical process examined in this study is more strongly linked to the Asian summer monsoon.

2011 ◽  
Vol 24 (21) ◽  
pp. 5671-5682 ◽  
Author(s):  
Anmin Duan ◽  
Fei Li ◽  
Meirong Wang ◽  
Guoxiong Wu

Abstract Using a dataset extended by the addition of data for 2004–08, this study reexamined the trend in the sensible heating (SH) flux at 73 meteorological stations over the Tibetan Plateau (TP) during 1980–2008 and investigated its impact on monsoon precipitation in the surrounding region. In contrast to ongoing climate warming, a weakening trend in SH is persistent over most of the plateau, despite a sharp increase in the ground–air temperature difference in 2004–08. The weakening trend in SH over the TP is primarily a response to the spatial nonuniformity of large-scale warming over the East Asian continent, which is characterized by much greater warming amplitude at mid- and high latitudes than over the tropics and subtropics. Furthermore, the suppressed air pump effect, which is driven by SH over the TP and acts as a strong forcing source, gives rise to reduced precipitation along the southern and eastern slopes of the plateau, and increased rainfall over northeastern India and the Bay of Bengal. No significantly stable correlation exists between the SH source over the TP and the overall trend or interdecadal variability in the East Asian or South Asian summer monsoon.


2020 ◽  
Vol 7 (3) ◽  
pp. 516-533 ◽  
Author(s):  
Jianchun Bian ◽  
Dan Li ◽  
Zhixuan Bai ◽  
Qian Li ◽  
Daren Lyu ◽  
...  

Abstract Due to its surrounding strong and deep Asian summer monsoon (ASM) circulation and active surface pollutant emissions, surface pollutants are transported to the stratosphere from the Tibetan Plateau region, which may have critical impacts on global climate through chemical, microphysical and radiative processes. This article reviews major recent advances in research regarding troposphere–stratosphere transport from the region of the Tibetan Plateau. Since the discovery of the total ozone valley over the Tibetan Plateau in summer from satellite observations in the early 1990s, new satellite-borne instruments have become operational and have provided significant new information on atmospheric composition. In addition, in situ measurements and model simulations are used to investigate deep convection and the ASM anticyclone, surface sources and pathways, atmospheric chemical transformations and the impact on global climate. Also challenges are discussed for further understanding critical questions on microphysics and microchemistry in clouds during the pathway to the global stratosphere over the Tibetan Plateau.


2020 ◽  
Vol 202 ◽  
pp. 103114 ◽  
Author(s):  
Jin-Feng Li ◽  
Gan Xie ◽  
Jian Yang ◽  
David K. Ferguson ◽  
Xiao-Dong Liu ◽  
...  

2020 ◽  
Vol 11 (9) ◽  
pp. 1543-1551
Author(s):  
Jinqiang Zhang ◽  
Xiangao Xia ◽  
Hongrong Shi ◽  
Xuemei Zong ◽  
Jun Li

2021 ◽  
pp. 1-36
Author(s):  
Soo-Hyun Seok ◽  
Kyong-Hwan Seo

AbstractRecent studies have highlighted that a primary mechanism of the East Asian summer monsoon (EASM) is the fluid dynamical response to the Tibetan Plateau (TP), that is, orographically forced Rossby waves. With this mechanism in mind, this study explores how changes in the location of the TP affect the EASM precipitation. Specifically, the TP is moved in the four cardinal directions using idealized general circulation model experiments. The results show that the monsoon aspects are entirely determined by the location of the TP. Interestingly, the strongest EASM precipitation occurs when the TP is situated near its current location, a situation in which downstream southerlies are well developed from the surface to aloft. However, southerlies into the EASM region weaken as the TP moves, which in turn reduces the precipitation. Nevertheless, as long as it moves in the east–west direction, the TP is likely to force the stationary waves that induce precipitation over the mid-latitudes (not necessarily over East Asia). In contrast, moving the TP well north of its original location does not induce strong monsoon flows over the EASM region, resulting in the driest case. Meanwhile, although the southward movement of the TP triggers downstream southerlies to some extent, it does not lead to an increase in the precipitation. Overall, these results show that the location of the TP is crucial in determining the EASM precipitation, and the latter is much more sensitive to the displacement of the TP in the meridional direction than in the zonal direction.


2019 ◽  
Author(s):  
Jianzhong Ma ◽  
Christoph Brühl ◽  
Qianshan He ◽  
Benedikt Steil ◽  
Vlassis A. Karydis ◽  
...  

Abstract. Enhanced aerosol abundance in the upper troposphere and lower stratosphere (UTLS) associated with the Asian summer monsoon (ASM), is referred to as the Asian Tropopause Aerosol Layer (ATAL). The chemical composition, microphysical properties and climate effects of aerosols in the ATAL have been the subject of discussion over the past decade. In this work, we use the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model at a relatively fine grid resolution (about 1.1 × 1.1 degrees) to numerically simulate the emissions and chemistry of aerosols and their precursors in the UTLS within the ASM anticyclone during the years 2010–2012. We find a pronounced maximum in aerosol extinction in the UTLS over the Tibetan Plateau, which to a large extent is caused by mineral dust emitted from the northern Tibetan Plateau and slope areas, lofted to an altitude of at least 10 km, and accumulating within the anticyclonic circulation. Our simulations show that mineral dust, water soluble compounds, such as nitrate and sulfate, and associated liquid water dominate aerosol extinction in the UTLS within the ASM anticyclone. Due to shielding of high background sulfate concentrations outside the anticyclone from volcanoes, a relative minimum of aerosol extinction within the anticyclone in the lower stratosphere is simulated, being most pronounced in 2011 when the Nabro eruption occurred. In contrast to mineral dust and nitrate concentrations, sulfate increases with increasing altitude due to the larger volcano effects in the lower stratosphere compared to the upper troposphere. Our study indicates that the UTLS over the Tibetan Plateau can act as a well-defined conduit for natural and anthropogenic gases and aerosols into the stratosphere.


Sign in / Sign up

Export Citation Format

Share Document