scholarly journals The Variability of the Atlantic Meridional Overturning Circulation, the North Atlantic Oscillation, and the El Niño–Southern Oscillation in the Bergen Climate Model

2005 ◽  
Vol 18 (13) ◽  
pp. 2361-2375 ◽  
Author(s):  
Juliette Mignot ◽  
Claude Frankignoul

Abstract The link between the interannual to interdecadal variability of the Atlantic meridional overturning circulation (AMOC) and the atmospheric forcing is investigated using 200 yr of a control simulation of the Bergen Climate Model, where the mean circulation cell is rather realistic, as is also the location of deep convection in the northern North Atlantic. The AMOC variability has a slightly red frequency spectrum and is primarily forced by the atmosphere. The maximum value of the AMOC is mostly sensitive to the deep convection in the Irminger Sea, which it lags by about 5 yr. The latter is mostly forced by a succession of atmospheric patterns that induce anomalous northerly winds over the area. The impact of the North Atlantic Oscillation on deep convection in the Labrador and Greenland Seas is represented realistically, but its influence on the AMOC is limited to the interannual time scale and is primarily associated with wind forcing. The tropical Pacific shows a strong variability in the model, with too strong an influence on the North Atlantic. However, its influence on the tropical Atlantic is realistic. Based on lagged correlations and the release of fictitious Lagrangian drifters, the tropical Pacific seems to influence the AMOC with a time lag of about 40 yr. The mechanism is as follows: El Niño events induce positive sea surface salinity anomalies in the tropical Atlantic that are advected northward, circulate in the subtropical gyre, and then subduct. In the ocean interior, part of the salinity anomaly is advected along the North Atlantic current, eventually reaching the Irminger and Labrador Seas after about 35 yr where they destabilize the water column and favor deep convection.

2021 ◽  
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

<p>There is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic streamfuntions, meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic variability. This mode accounting for about 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre circulation leads to lower surface salinity and density in the sinking region, which eventually reduces deep convection and AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.</p>


2021 ◽  
pp. 1-56
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park

AbstractThere is a controversy about the nature of multidecadal climate variability in the North Atlantic (NA) region, concerning the roles of ocean circulation and atmosphere-ocean coupling. Here we describe NA multidecadal variability from a version of the Kiel Climate Model, in which both subpolar gyre (SPG)-Atlantic Meridional Overturning Circulation (AMOC) and atmosphere-ocean coupling are essential. The oceanic barotropic and meridional overturning streamfunctions, and sea level pressure are jointly analyzed to derive the leading mode of Atlantic sector variability. This mode accounting for 23.7 % of the total combined variance is oscillatory with an irregular periodicity of 25-50 years and an e-folding time of about a decade. SPG and AMOC mutually influence each other and together provide the delayed negative feedback necessary for maintaining the oscillation. An anomalously strong SPG, for example, drives higher surface salinity and density in the NA’s sinking region. In response, oceanic deep convection and AMOC intensify, which, with a time delay of about a decade, reduces SPG strength by enhancing upper-ocean heat content. The weaker gyre leads to lower surface salinity and density in the sinking region, which reduces deep convection and eventually AMOC strength. There is a positive ocean-atmosphere feedback between the sea surface temperature and low-level atmospheric circulation over the Southern Greenland area, with related wind stress changes reinforcing SPG changes, thereby maintaining the (damped) multidecadal oscillation against dissipation. Stochastic surface heat-flux forcing associated with the North Atlantic Oscillation drives the eigenmode.


2007 ◽  
Vol 20 (19) ◽  
pp. 4940-4956 ◽  
Author(s):  
Uta Krebs ◽  
A. Timmermann

Abstract Using a coupled ocean–sea ice–atmosphere model of intermediate complexity, the authors study the influence of air–sea interactions on the stability of the Atlantic Meridional Overturning Circulation (AMOC). Mimicking glacial Heinrich events, a complete shutdown of the AMOC is triggered by the delivery of anomalous freshwater forcing to the northern North Atlantic. Analysis of fully and partially coupled freshwater perturbation experiments under glacial conditions shows that associated changes of the heat transport in the North Atlantic lead to a cooling north of the thermal equator and an associated strengthening of the northeasterly trade winds. Because of advection of cold air and an intensification of the trade winds, the intertropical convergence zone (ITCZ) is shifted southward. Changes of the accumulated precipitation lead to the generation of a positive salinity anomaly in the northern tropical Atlantic and a negative anomaly in the southern tropical Atlantic. During the shutdown phase of the AMOC, cross-equatorial oceanic surface flow is halted, preventing dilution of the positive salinity anomaly in the North Atlantic. Advected northward by the wind-driven ocean circulation, the positive salinity anomaly increases the upper-ocean density in the deep-water formation regions, thereby accelerating the recovery of the AMOC considerably. Partially coupled experiments that neglect tropical air–sea coupling reveal that the recovery time of the AMOC is almost twice as long as in the fully coupled case. The impact of a shutdown of the AMOC on the Indian and Pacific Oceans can be decomposed into atmospheric and oceanic contributions. Temperature anomalies in the Northern Hemisphere are largely controlled by atmospheric circulation anomalies, whereas those in the Southern Hemisphere are strongly determined by ocean dynamical changes and exhibit a time lag of several decades. An intensification of the Pacific meridional overturning cell in the northern North Pacific during the AMOC shutdown can be explained in terms of wind-driven ocean circulation changes acting in concert with global ocean adjustment processes.


2020 ◽  
Author(s):  
Brady Ferster ◽  
Alexey Fedorov ◽  
Juliette Mignot ◽  
Eric Guilyardi

<p>The Arctic and North Atlantic Ocean play a fundamental role in Earth’s water cycle, distribution of energy (i.e. heat), and the formation of cold, dense waters. Through the Atlantic meridional overturning circulation (AMOC), heat is transported to the high-latitudes. Classically, the climate impact of AMOC variations has been investigated through hosing experiments, where anomalous freshwater is artificially added or removed from the North Atlantic to modulate deep water formation. However, such a protocol introduces artificial changes in the subpolar area, possibly masking the effect of the AMOC modulation. Here, we develope a protocol where AMOC intensity is modulated remotely through the teleconnection of the tropical Indian Ocean (TIO), so as to investigate more robustly the impact of the AMOC on climate. Warming in the TIO has recently been shown to strengthen the Walker circulation in the Atlantic through the propagation of Kelvin and Rossby waves, increasing and stabilizing the AMOC on longer timescales. Using the latest coupled-model from Insitut Pierre Simon Laplace (IPSL-CM6), we have designed a three-member ensemble experiment nudging the surface temperatures of the TIO by -2°C, +1°C, and +2°C for 100 years. The objectives are to better quantify the timescales of AMOC variability outside the use of hosing experiments and the TIO-AMOC relationship.  In each ensemble member, there are two distinct features compared to the control run. The initial changes in AMOC (≤20 years) are largely atmospherically driven, while on longer timescales is largely driven by the TIO teleconnection to the tropical Atlantic. In the northern North Atlantic, changes in sensible heat fluxes range from 15 to 20 W m<sup>-2 </sup>in all three members compared to the control run, larger than the natural variability. On the longer timescales, AMOC variability is strongly influenced from anomalies in the tropical Atlantic Ocean. The TIO teleconnection supports decreased precipitation in the tropical Atlantic Ocean during warming (opposite during TIO cooling) events, as well as positive salinity anomalies and negative temperature anomalies. Using lagged correlations, there are the strongest correlations on scales within one year and a delayed response of 30 years (in the -2°C ensembles). In comparing the last 20 years, nudging the TIO induces a 3.3 Sv response per 1°C change. In summary, we have designed an experiment to investigate the AMOC variability without directly changing the North Atlantic through hosing, making way for a more unbiased approach to analysing the AMOC variability in climate models.</p>


2019 ◽  
Vol 32 (4) ◽  
pp. 977-996 ◽  
Author(s):  
Wei Liu ◽  
Alexey Fedorov ◽  
Florian Sévellec

We explore the mechanisms by which Arctic sea ice decline affects the Atlantic meridional overturning circulation (AMOC) in a suite of numerical experiments perturbing the Arctic sea ice radiative budget within a fully coupled climate model. The imposed perturbations act to increase the amount of heat available to melt ice, leading to a rapid Arctic sea ice retreat within 5 years after the perturbations are activated. In response, the AMOC gradually weakens over the next ~100 years. The AMOC changes can be explained by the accumulation in the Arctic and subsequent downstream propagation to the North Atlantic of buoyancy anomalies controlled by temperature and salinity. Initially, during the first decade or so, the Arctic sea ice loss results in anomalous positive heat and salinity fluxes in the subpolar North Atlantic, inducing positive temperature and salinity anomalies over the regions of oceanic deep convection. At first, these anomalies largely compensate one another, leading to a minimal change in upper ocean density and deep convection in the North Atlantic. Over the following years, however, more anomalous warm water accumulates in the Arctic and spreads to the North Atlantic. At the same time, freshwater that accumulates from seasonal sea ice melting over most of the upper Arctic Ocean also spreads southward, reaching as far as south of Iceland. These warm and fresh anomalies reduce upper ocean density and suppress oceanic deep convection. The thermal and haline contributions to these buoyancy anomalies, and therefore to the AMOC slowdown during this period, are found to have similar magnitudes. We also find that the related changes in horizontal wind-driven circulation could potentially push freshwater away from the deep convection areas and hence strengthen the AMOC, but this effect is overwhelmed by mean advection.


2008 ◽  
Vol 21 (6) ◽  
pp. 1403-1416 ◽  
Author(s):  
Reindert J. Haarsma ◽  
Edmo Campos ◽  
Wilco Hazeleger ◽  
Camiel Severijns

Abstract The influence of the meridional overturning circulation on tropical Atlantic climate and variability has been investigated using the atmosphere–ocean coupled model Speedy-MICOM (Miami Isopycnic Coordinate Ocean Model). In the ocean model MICOM the strength of the meridional overturning cell can be regulated by specifying the lateral boundary conditions. In case of a collapse of the basinwide meridional overturning cell the SST response in the Atlantic is characterized by a dipole with a cooling in the North Atlantic and a warming in the tropical and South Atlantic. The cooling in the North Atlantic is due to the decrease in the strength of the western boundary currents, which reduces the northward advection of heat. The warming in the tropical Atlantic is caused by a reduced ventilation of water originating from the South Atlantic. This effect is most prominent in the eastern tropical Atlantic during boreal summer when the mixed layer attains its minimum depth. As a consequence the seasonal cycle as well as the interannual variability in SST is reduced. The characteristics of the cold tongue mode are changed: the variability in the eastern equatorial region is strongly reduced and the largest variability is now in the Benguela, Angola region. Because of the deepening of the equatorial thermocline, variations in the thermocline depth in the eastern tropical Atlantic no longer significantly affect the mixed layer temperature. The gradient mode remains unaltered. The warming of the tropical Atlantic enhances and shifts the Hadley circulation. Together with the cooling in the North Atlantic, this increases the strength of the subtropical jet and the baroclinicity over the North Atlantic.


2009 ◽  
Vol 5 (2) ◽  
pp. 1055-1107 ◽  
Author(s):  
M. Kageyama ◽  
J. Mignot ◽  
D. Swingedouw ◽  
C. Marzin ◽  
R. Alkama ◽  
...  

Abstract. Numerous records from the North Atlantic and the surrounding continents have shown rapid and large amplitude climate variability during the last glacial period. This variability has often been associated to changes in the Atlantic Meridional Overturning Circulation (AMOC). Rapid climate change on the same time scales has also been reconstructed for sites far away from the North Atlantic, such as the tropical Atlantic, the East Pacific and Asia. The mechanisms explaining these climatic responses to the state of the AMOC are far from being completely understood, especially in a glacial context. Here we study three glacial simulations characterised by different AMOC strengths: 18, 15 and 2 Sv. With these simulations, we analyse the global climate sensitivity to a weak (18 to 15 Sv) and a strong (15 to 2 Sv) decrease in the AMOC strength. A weak decrease in the AMOC is associated, in our model simulations, to the classical North Atlantic and European cooling, but this cooling is not homogeneous over this region. We investigate the reasons for a lesser cooling (or even slight warming in some cases) over the Norwegian Sea and Northwestern Europe. It appears that the convection site in this area is active in both simulations, but that convection is unexpectedly stronger in the 15 Sv simulation. Due to the large variability of the atmosphere, it is difficult to definitely establish what is the origin of this climatic difference, but it appears that the atmospheric circulation anomaly helps sustaining the activity of this convection sites. Far from the North Atlantic, the climatic response is of small amplitude, the only significant change appearing in summer over the tropical Atlantic, where the Inter-Tropical Convergence Zone (ITCZ) shifts southward. The climate differences between the 15 Sv and 2 Sv simulations are much larger and our analyses focus on three areas: the North Atlantic and surrounding regions, the Tropics and the Indian monsoon region. We study the timing of appearance of these responses to the AMOC shutdown, which gives some clues about the mechanisms for these teleconnections. We show that the North Atlantic cooling associated with the collapse of the AMOC induces a cyclonic atmospheric circulation anomaly centered over the North Atlantic, which modulates the eastward advection of the cold anomaly over the Eurasian continent. It can explain that the cooling is not as strong over Western Europe as over the North Atlantic and the rest of the Eurasian continent. Another modification in the northern extratropical stationary waves occurs over the Eastern Pacific, explaining a warming over Northwestern America. In the Tropics, the ITCZ southward shift in this simulation appears to be strongest over the Atlantic and Eastern Pacific and results from an ajustment of the atmospheric and oceanic transports. Finally, the Indian monsoon weakening also appears to be connected to the tropospheric cooling over Eurasia.


2008 ◽  
Vol 21 (12) ◽  
pp. 3002-3019 ◽  
Author(s):  
Lixin Wu ◽  
Chun Li ◽  
Chunxue Yang ◽  
Shang-Ping Xie

Abstract The global response to a shutdown of the Atlantic meridional overturning circulation (AMOC) is investigated by conducting a water-hosing experiment with a coupled ocean–atmosphere general circulation model. In the model, the addition of freshwater in the subpolar North Atlantic shuts off the AMOC. The intense cooling in the extratropical North Atlantic induces a widespread response over the global ocean. In the tropical Atlantic, a sea surface temperature (SST) dipole forms, with cooling north and warming on and south of the equator. This tropical dipole is most pronounced in June–December, displacing the Atlantic intertropical convergence zone southward. In the tropical Pacific, a SST dipole forms in boreal spring in response to the intensified northeast trades across Central America and triggering the development of an El Niño–like warming that peaks on the equator in boreal fall. In the extratropical North Pacific, a basinwide cooling of ∼1°C takes place, with a general westward increase in intensity. A series of sensitivity experiments are carried out to shed light on the ocean–atmospheric processes for these global teleconnections. The results demonstrate the following: ocean dynamical adjustments are responsible for the formation of the tropical Atlantic dipole; air–sea interaction over the tropical Atlantic is key to the tropical Pacific response; extratropical teleconnection from the North Atlantic is most important for the North Pacific cooling, with the influence from the tropics being secondary; and the subtropical North Pacific cooling propagates southwestward from off Baja California to the western and central equatorial Pacific through the wind–evaporation–SST feedback.


Sign in / Sign up

Export Citation Format

Share Document