scholarly journals Elimination of the Greenland Ice Sheet in a High CO2 Climate

2005 ◽  
Vol 18 (17) ◽  
pp. 3409-3427 ◽  
Author(s):  
J. K. Ridley ◽  
P. Huybrechts ◽  
J. M. Gregory ◽  
J. A. Lowe

Abstract Projections of future global sea level depend on reliable estimates of changes in the size of polar ice sheets. Calculating this directly from global general circulation models (GCMs) is unreliable because the coarse resolution of 100 km or more is unable to capture narrow ablation zones, and ice dynamics is not usually taken into account in GCMs. To overcome these problems a high-resolution (20 km) dynamic ice sheet model has been coupled to the third Hadley Centre Coupled Ocean–Atmosphere GCM (HadCM3). A novel feature is the use of two-way coupling, so that climate changes in the GCM drive ice mass changes in the ice sheet model that, in turn, can alter the future climate through changes in orography, surface albedo, and freshwater input to the model ocean. At the start of the main experiment the atmospheric carbon dioxide concentration was increased to 4 times the preindustrial level and held constant for 3000 yr. By the end of this period the Greenland ice sheet is almost completely ablated and has made a direct contribution of approximately 7 m to global average sea level, causing a peak rate of sea level rise of 5 mm yr−1 early in the simulation. The effect of ice sheet depletion on global and regional climate has been examined and it was found that apart from the sea level rise, the long-term effect on global climate is small. However, there are some significant regional climate changes that appear to have reduced the rate at which the ice sheet ablates.


2017 ◽  
Author(s):  
Martin Rückamp ◽  
Ulrike Falk ◽  
Katja Frieler ◽  
Stefan Lange ◽  
Angelika Humbert

Abstract. Sea level rise associated with changing climate is expected to pose a major challenge for societies. Here, we estimate the future contribution of the Greenland ice sheet (GrIS) to sea level change in terms of different ice sheet atmospheric forcings arising from three general circulation models (GCMs), HadGEM2-ES, IPSL-CM5A-LR and MIROC5, for RCP2.6. We run the ice sheet model ISSM with higher order approximation and use a spin-up/inversion scheme to estimate the present day state. The forcing fields for surface mass balance (SMB) and ice surface temperature Ts are computed by the SEMIC model (Krapp et al., 2017) and applied as anomalies to RACMO2.3 fields. According to the three GCMs, warming of 1.5 °C has been reached at GrIS by 2005 (HadGEM2-ES, MIROC5) or as early as 1995 (IPSL-CM5A-LR). Forcing fields suffer from underestimation of polar amplification (MIROC5) and implausible distribution of changes in Ts (IPSL-CM5A-LR). HadGEM2-ES is the most plausible forcing, with globally a peak and decline behaviour leading to overshooting of 1.5 °C and over GrIS a slight recovery of SMB towards values of about half the present day SMB. We find sea level to rise for HadGEM2-ES by 71 mm by 2100 and 189 mm by 2300. Simulated an observed sea level rise 2002–2014 is of the same magnitude, but with a temporal lag to be at least five years (HadGEM2-ES). By end of 22nd century sea level contribution is still 0.46 mm/a for HadGEM2-ES. Hence, even a RCP2.6 peak and decline scenario will lead to significant changes of GrIS including elevation changes up to 100 m and loss of floating tongues. The values of this study may serve as a lower bound, as processes proven to play a major role in GrIS mass loss are not yet represented by the model, but are considerably larger than other studies.



2015 ◽  
Vol 9 (3) ◽  
pp. 1039-1062 ◽  
Author(s):  
J. J. Fürst ◽  
H. Goelzer ◽  
P. Huybrechts

Abstract. Continuing global warming will have a strong impact on the Greenland ice sheet in the coming centuries. During the last decade (2000–2010), both increased melt-water runoff and enhanced ice discharge from calving glaciers have contributed 0.6 ± 0.1 mm yr−1 to global sea-level rise, with a relative contribution of 60 and 40% respectively. Here we use a higher-order ice flow model, spun up to present day, to simulate future ice volume changes driven by both atmospheric and oceanic temperature changes. For these projections, the flow model accounts for runoff-induced basal lubrication and ocean warming-induced discharge increase at the marine margins. For a suite of 10 atmosphere and ocean general circulation models and four representative concentration pathway scenarios, the projected sea-level rise between 2000 and 2100 lies in the range of +1.4 to +16.6 cm. For two low emission scenarios, the projections are conducted up to 2300. Ice loss rates are found to abate for the most favourable scenario where the warming peaks in this century, allowing the ice sheet to maintain a geometry close to the present-day state. For the other moderate scenario, loss rates remain at a constant level over 300 years. In any scenario, volume loss is predominantly caused by increased surface melting as the contribution from enhanced ice discharge decreases over time and is self-limited by thinning and retreat of the marine margin, reducing the ice–ocean contact area. As confirmed by other studies, we find that the effect of enhanced basal lubrication on the volume evolution is negligible on centennial timescales. Our projections show that the observed rates of volume change over the last decades cannot simply be extrapolated over the 21st century on account of a different balance of processes causing ice loss over time. Our results also indicate that the largest source of uncertainty arises from the surface mass balance and the underlying climate change projections, not from ice dynamics.



2013 ◽  
Vol 38 (1) ◽  
pp. 19-54 ◽  
Author(s):  
Vena W. Chu

Understanding Greenland ice sheet (GrIS) hydrology is essential for evaluating response of ice dynamics to a warming climate and future contributions to global sea level rise. Recently observed increases in temperature and melt extent over the GrIS have prompted numerous remote sensing, modeling, and field studies gauging the response of the ice sheet and outlet glaciers to increasing meltwater input, providing a quickly growing body of literature describing seasonal and annual development of the GrIS hydrologic system. This system is characterized by supraglacial streams and lakes that drain through moulins, providing an influx of meltwater into englacial and subglacial environments that increases basal sliding speeds of outlet glaciers in the short term. However, englacial and subglacial drainage systems may adjust to efficiently drain increased meltwater without significant changes to ice dynamics over seasonal and annual scales. Both proglacial rivers originating from land-terminating glaciers and subglacial conduits under marine-terminating glaciers represent direct meltwater outputs in the form of fjord sediment plumes, visible in remotely sensed imagery. This review provides the current state of knowledge on GrIS surface water hydrology, following ice sheet surface meltwater production and transport via supra-, en-, sub-, and proglacial processes to final meltwater export to the ocean. With continued efforts targeting both process-level and systems analysis of the hydrologic system, the larger picture of how future changes in Greenland hydrology will affect ice sheet glacier dynamics and ultimately global sea level rise can be advanced.



2020 ◽  
Author(s):  
Paolo Colosio ◽  
Marco Tedesco ◽  
Xavier Fettweis ◽  
Roberto Ranzi

Abstract. Surface melting is a major component of the Greenland ice sheet (GrIS) surface mass balance, affecting sea level rise through direct runoff and the modulation on ice dynamics and hydrological processes, supraglacially, englacially and subglacially. Passive microwave (PMW) brightness temperature observations are of paramount importance in studying the spatial and temporal evolution of surface melting in view of their long temporal coverage (1979–to date) and high temporal resolution (daily). However, a major limitation of PMW datasets has been the relatively coarse spatial resolution, being historically of the order of tens of kilometres. Here, we use a newly released passive microwave dataset (37 GHz, horizontal polarization) made available through the NASA MeASUREs program to study the spatiotemporal evolution of surface melting over the GrIS at an enhanced spatial resolution of 3.125 Km. We assess the outputs of different detection algorithms through data collected by Automatic Weather Stations (AWS) and the outputs of the MAR regional climate model. We found that surface melting is well captured using a dynamic algorithm based on the outputs of MEMLS model, capable to detect sporadic and persistent melting. Our results indicate that, during the reference period 1979–2019 (1988–2019), surface melting over the GrIS increased in terms of both duration, up to ~4.5 (2.9) days per decade, and extension, up to 6.9 % (3.6 %) of the GrIS surface extent per decade, according to the MEMLS algorithm. Furthermore, the melting season has started up to ~4 (2.5) days earlier and ended ~7 (3.9) days later per decade. We also explored the information content of the enhanced resolution dataset with respect to the one at 25 km and MAR outputs through a semi-variogram approach. We found that the enhanced product is more sensitive to local scale processes, hence confirming the potential interest of this new enhanced product for studying surface melting over Greenland at a higher spatial resolution than the historical products and monitor its impact on sea level rise. This offers the opportunity to improve our understanding of the processes driving melting, to validate modelled melt extent at high resolution and potentially to assimilate this data in climate models.



2019 ◽  
Author(s):  
Donald A. Slater ◽  
Denis Felikson ◽  
Fiamma Straneo ◽  
Heiko Goelzer ◽  
Christopher M. Little ◽  
...  

Abstract. Changes in the ocean are expected to be an important determinant of the Greenland Ice Sheet's future sea level contribution. Yet representing these changes in continental-scale ice sheet models remains challenging due to the small scale of the key physics, and limitations in processing understanding. Here we present the ocean forcing strategy for Greenland Ice Sheet models taking part in the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6), the primary community effort to provide 21st century sea level projections for the Intergovernmental Panel on Climate Change 6th Assessment Report. Beginning from global atmosphere-ocean general circulation models, we describe two complementary approaches to provide ocean boundary conditions for Greenland Ice Sheet models, termed the retreat and submarine melt implementations. The retreat implementation parameterizes glacier retreat as a function of projected submarine melting, is designed to be implementable by all ice sheet models, and results in retreat of around 1 and 15 km by 2100 in RCP2.6 and 8.5 scenarios respectively. The submarine melt implementation provides estimated submarine melting only, leaving the ice sheet model to solve for the resulting calving and glacier retreat, and suggests submarine melt rates will change little under RCP2.6 but will approximately triple by 2100 under RCP8.5. Both implementations have necessarily made use of simplifying assumptions and poorly-constrained parameterisations and as such, further research on submarine melting, calving and fjord-shelf exchange should remain a priority. Nevertheless, the presented framework will allow an ensemble of Greenland Ice Sheet models to be systematically and consistently forced by the ocean for the first time, and should therefore result in a significant improvement in projections of the Greenland ice sheet's contribution to future sea level change.



2019 ◽  
Vol 13 (1) ◽  
pp. 373-395 ◽  
Author(s):  
Sébastien Le clec'h ◽  
Sylvie Charbit ◽  
Aurélien Quiquet ◽  
Xavier Fettweis ◽  
Christophe Dumas ◽  
...  

Abstract. In the context of global warming, growing attention is paid to the evolution of the Greenland ice sheet (GrIS) and its contribution to sea-level rise at the centennial timescale. Atmosphere–GrIS interactions, such as the temperature–elevation and the albedo feedbacks, have the potential to modify the surface energy balance and thus to impact the GrIS surface mass balance (SMB). In turn, changes in the geometrical features of the ice sheet may alter both the climate and the ice dynamics governing the ice sheet evolution. However, changes in ice sheet geometry are generally not explicitly accounted for when simulating atmospheric changes over the Greenland ice sheet in the future. To account for ice sheet–climate interactions, we developed the first two-way synchronously coupled model between a regional atmospheric model (MAR) and a 3-D ice sheet model (GRISLI). Using this novel model, we simulate the ice sheet evolution from 2000 to 2150 under a prolonged representative concentration pathway scenario, RCP8.5. Changes in surface elevation and ice sheet extent simulated by GRISLI have a direct impact on the climate simulated by MAR. They are fed to MAR from 2020 onwards, i.e. when changes in SMB produce significant topography changes in GRISLI. We further assess the importance of the atmosphere–ice sheet feedbacks through the comparison of the two-way coupled experiment with two other simulations based on simpler coupling strategies: (i) a one-way coupling with no consideration of any change in ice sheet geometry; (ii) an alternative one-way coupling in which the elevation change feedbacks are parameterized in the ice sheet model (from 2020 onwards) without taking into account the changes in ice sheet topography in the atmospheric model. The two-way coupled experiment simulates an important increase in surface melt below 2000 m of elevation, resulting in an important SMB reduction in 2150 and a shift of the equilibrium line towards elevations as high as 2500 m, despite a slight increase in SMB over the central plateau due to enhanced snowfall. In relation with these SMB changes, modifications of ice sheet geometry favour ice flux convergence towards the margins, with an increase in ice velocities in the GrIS interior due to increased surface slopes and a decrease in ice velocities at the margins due to decreasing ice thickness. This convergence counteracts the SMB signal in these areas. In the two-way coupling, the SMB is also influenced by changes in fine-scale atmospheric dynamical processes, such as the increase in katabatic winds from central to marginal regions induced by increased surface slopes. Altogether, the GrIS contribution to sea-level rise, inferred from variations in ice volume above floatation, is equal to 20.4 cm in 2150. The comparison between the coupled and the two uncoupled experiments suggests that the effect of the different feedbacks is amplified over time with the most important feedbacks being the SMB–elevation feedbacks. As a result, the experiment with parameterized SMB–elevation feedback provides a sea-level contribution from GrIS in 2150 only 2.5 % lower than the two-way coupled experiment, while the experiment with no feedback is 9.3 % lower. The change in the ablation area in the two-way coupled experiment is much larger than those provided by the two simplest methods, with an underestimation of 11.7 % (14 %) with parameterized feedbacks (no feedback). In addition, we quantify that computing the GrIS contribution to sea-level rise from SMB changes only over a fixed ice sheet mask leads to an overestimation of ice loss of at least 6 % compared to the use of a time variable ice sheet mask. Finally, our results suggest that ice-loss estimations diverge when using the different coupling strategies, with differences from the two-way method becoming significant at the end of the 21st century. In particular, even if averaged over the whole GrIS the climatic and ice sheet fields are relatively similar; at the local and regional scale there are important differences, highlighting the importance of correctly representing the interactions when interested in basin scale changes.



2014 ◽  
Vol 55 (67) ◽  
pp. 115-126 ◽  
Author(s):  
Ute C. Herzfeld ◽  
Brian W. McDonald ◽  
Bruce F. Wallin ◽  
Phillip A. Chen ◽  
Helmut Mayer ◽  
...  

AbstractDynamic ice-sheet models are used to assess the contribution of mass loss from the Greenland ice sheet to sea-level rise. Mass transfer from ice sheet to ocean is in a large part through outlet glaciers. Bed topography plays an important role in ice dynamics, since the acceleration from the slow-moving inland ice to an ice stream is in many cases caused by the existence of a subglacial trough or trough system. Problems are that most subglacial troughs are features of a scale not resolved in most ice-sheet models and that radar measurements of subglacial topography do not always reach the bottoms of narrow troughs. The trough-system algorithm introduced here employs mathematical morphology and algebraic topology to correctly represent subscale features in a topographic generalization, so the effects of troughs on ice flow are retained in ice-dynamic models. The algorithm is applied to derive a spatial elevation model of Greenland subglacial topography, integrating recently collected radar measurements (CReSIS data) of the Jakobshavn Isbræ, Helheim, Kangerdlussuaq and Petermann glacier regions. The resultant JakHelKanPet digital elevation model has been applied in dynamic ice-sheet modeling and sea-level-rise assessment.



2020 ◽  
Author(s):  
Andrew Shepherd ◽  

<p>In recent decades, the Antarctic and Greenland Ice Sheets have been major contributors to global sea-level rise and are expected to be so in the future. Although increases in glacier flow and surface melting have been driven by oceanic and atmospheric warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite records of changes in polar ice sheet volume, flow and gravitational potential to produce a reconciled estimate of their mass balance. <strong>Since the early 1990’s, ice losses from Antarctica and Greenland have caused global sea-levels to rise by 18.4 millimetres, on average, and there has been a sixfold increase in the volume of ice loss over time. Of this total, 41 % (7.6 millimetres) originates from Antarctica and 59 % (10.8 millimetres) is from Greenland. In this presentation, we compare our reconciled estimates of Antarctic and Greenland ice sheet mass change to IPCC projection of sea level rise to assess the model skill in predicting changes in ice dynamics and surface mass balance.  </strong>Cumulative ice losses from both ice sheets have been close to the IPCC’s predicted rates for their high-end climate warming scenario, which forecast an additional 170 millimetres of global sea-level rise by 2100 when compared to their central estimate.</p>



2021 ◽  
Author(s):  
Isabel Nias ◽  
Sophie Nowicki ◽  
Denis Felikson

<p>Mass loss from the Greenland Ice Sheet (GrIS) can be partitioned between surface mass balance (SMB) and discharge due to ice dynamics through its marine-terminating outlet glaciers. A perturbation to a glacier terminus (e.g. a calving event) results in an instantaneous response in velocity and mass loss, but also a diffusive response due to the evolution of ice thickness over time. This diffusive response means the total impact of a retreat event can take decades to be fully realised. Here we model the committed response of the GrIS to recent observed changes in terminus position, neglecting any future climate perturbations. Our simulations quantify the sea level contribution that is locked in due to the slow dynamic response of the ice. Using the Ice Sheet System Model (ISSM), we run forward simulations starting from an initial state representative of the 2007 ice sheet. We apply perturbations to the marine-terminating glacier termini that represent recent observed changes, and simulate the response over the 21<sup>st</sup> Century, holding the climate forcing constant. The sensitivity of the ice sheet response to model parameter uncertainty is explored with in an ensemble framework, and GRACE data is used to constrain the results. We find that terminus retreat observed between 2007 and 2015 results in approximately 6 mm of sea level rise by 2100, with retreat having a lasting impact on velocity and mass loss. Our results complement the ISMIP6 projections, which report the ice sheet response to future forcing, excluding the background committed response. In this way, we can obtain estimates of Greenland’s total contribution to sea level rise by 2100.</p>



2021 ◽  
Author(s):  
Max Brils ◽  
Peter Kuipers Munneke ◽  
Willem Jan van de Berg ◽  
Achim Heilig ◽  
Baptiste Vandercrux ◽  
...  

<p>Recent studies indicate that a declining surface mass balance will dominate the Greenland Ice Sheet’s (GrIS) contribution to 21<sup>st</sup> century sea level rise. It is therefore crucial to understand the liquid water balance of the ice sheet and its response to increasing temperatures and surface melt if we want to accurately predict future sea level rise. The ice sheet firn layer covers ~90% of the GrIS and provides pore space for storage and refreezing of meltwater. Because of this, the firn layer can retain up to ~45% of the surface meltwater and thus act as an efficient buffer to ice sheet mass loss. However, in a warming climate this buffer capacity of the firn layer is expected to decrease, amplifying meltwater runoff and sea-level rise. Dedicated firn models are used to understand how firn layers evolve and affect runoff. Additionally, firn models are used to estimate the changing thickness of the firn layer, which is necessary in altimetry to convert surface height change into ice sheet mass loss.</p><p>Here, we present the latest version of our firn model IMAU-FDM. With respect to the previous version, changes have been made to the handling of the freshly fallen snow, the densification rate of the firn and the conduction of heat. These changes lead to an improved representation of firn density and temperature. The results have been thoroughly validated using an extensive dataset of density and temperature measurements that we have compiled covering 126 different locations on the GrIS. Meltwater behaviour in the model is validated with upward-looking GPR measurements at Dye-2. Lastly, we present an in-depth look at the evolution firn characteristics at some typical locations in Greenland.</p><p>Dedicated, stand-alone firn models offer various benefits to using a regional climate model with an embedded firn model. Firstly, the vertical resolution for buried snow and ice layers can be larger, improving accuracy. Secondly, a stand-alone firn model allows for spinning up the model to a more accurate equilibrium state. And thirdly, a stand-alone model is more cost- and time-effective to use. Firn models are increasingly capable of simulating the firn layer, but areas with large amounts of melt still pose the greatest challenge.</p>



Sign in / Sign up

Export Citation Format

Share Document