scholarly journals Modeling the Barrier-Layer Formation in the Southeastern Arabian Sea*

2007 ◽  
Vol 20 (10) ◽  
pp. 2109-2120 ◽  
Author(s):  
F. Durand ◽  
D. Shankar ◽  
C. de Boyer Montégut ◽  
S. S. C. Shenoi ◽  
B. Blanke ◽  
...  

Abstract The effect of salinity on the formation of the barrier layer (BL) in the southeastern Arabian Sea (SEAS) is investigated using an ocean general circulation model. In accordance with previous studies, the runoff distribution and the India–Sri Lanka passage have a strong impact on the realism of the salinity simulated in the area at seasonal time scales. The model simulates a BL pattern in fairly good agreement with available observations. Eulerian and Lagrangian approaches show that the BL is formed by two complementary processes, the arrival of low-salinity surface waters that are cooled en route to the SEAS and downwelling of waters mostly local to the SEAS in the subsurface layers. The surface waters are partly of Bay of Bengal origin and are partly from the SEAS, but are cooled east and south of Sri Lanka in the model. That the downwelled subsurface waters are warm and are not cooled leads to temperature inversions in the BL. The main forcing for this appears to be remotely forced planetary waves.

2007 ◽  
Vol 37 (4) ◽  
pp. 896-907 ◽  
Author(s):  
Alexey Fedorov ◽  
Marcelo Barreiro ◽  
Giulio Boccaletti ◽  
Ronald Pacanowski ◽  
S. George Philander

Abstract The impacts of a freshening of surface waters in high latitudes on the deep, slow, thermohaline circulation have received enormous attention, especially the possibility of a shutdown in the meridional overturning that involves sinking of surface waters in the northern Atlantic Ocean. A recent study by Fedorov et al. has drawn attention to the effects of a freshening on the other main component of the oceanic circulation—the swift, shallow, wind-driven circulation that varies on decadal time scales and is closely associated with the ventilated thermocline. That circulation too involves meridional overturning, but its variations and critical transitions affect mainly the Tropics. A surface freshening in mid- to high latitudes can deepen the equatorial thermocline to such a degree that temperatures along the equator become as warm in the eastern part of the basin as they are in the west, the tropical zonal sea surface temperature gradient virtually disappears, and permanently warm conditions prevail in the Tropics. In a model that has both the wind-driven and thermohaline components of the circulation, which factors determine the relative effects of a freshening on the two components and its impact on climate? Studies with an idealized ocean general circulation model find that vertical diffusivity is one of the critical parameters that affect the relative strength of the two circulation components and hence their response to a freshening. The spatial structure of the freshening and imposed meridional temperature gradients are other important factors.


2017 ◽  
Author(s):  
Arachaporn Anutaliya ◽  
Uwe Send ◽  
Julie L. McClean ◽  
Janet Sprintall ◽  
Luc Rainville ◽  
...  

Abstract. The existence of a seasonally varying undercurrent along 8° N off the east coast of Sri Lanka is inferred from Conductivity-Temperature-Depth profiles, Argo floats, glider measurements, and Ocean General Circulation Model outputs. Together, they reveal an undercurrent below 200 m that is approximately 140 km wide and can reach a maximum speed of 45 cm s−1 that hitherto has not been observed. The undercurrent, flowing in the opposite direction to the surface current, is most pronounced during boreal spring and summer and switches direction between these two seasons. The undercurrent transports relatively fresh water southward during spring, while it advects more saline water northward along the east coast of Sri Lanka during summer. This suggests a pathway, independent of the surface circulation, whereby freshwater is removed and saline water is injected into the Bay of Bengal.


2009 ◽  
Vol 39 (3) ◽  
pp. 753-767 ◽  
Author(s):  
Max Yaremchuk ◽  
Julian McCreary ◽  
Zuojun Yu ◽  
Ryo Furue

Abstract The salinity distribution in the South China Sea (SCS) has a pronounced subsurface maximum from 150–220 m throughout the year. This feature can only be maintained by the existence of a mean flow through the SCS, consisting of a net inflow of salty North Pacific tropical water through the Luzon Strait and outflow through the Mindoro, Karimata, and Taiwan Straits. Using an inverse modeling approach, the authors show that the magnitude and space–time variations of the SCS thermohaline structure, particularly for the salinity maximum, allow a quantitative estimate of the SCS throughflow and its distribution among the three outflow straits. Results from the inversion are compared with available observations and output from a 50-yr simulation of a highly resolved ocean general circulation model. The annual-mean Luzon Strait transport is found to be 2.4 ± 0.6 Sv (Sv ≡ 106 m3 s−1). This inflow is balanced by the outflows from the Karimata (0.3 ± 0.5 Sv), Mindoro (1.5 ± 0.4), and Taiwan (0.6 ± 0.5 Sv) Straits. Results of the inversion suggest that the Karimata transport tends to be overestimated in numerical models. The Mindoro Strait provides the only passage from the SCS deeper than 100 m, and half of the SCS throughflow (1.2 ± 0.3 Sv) exits the basin below 100 m in the Mindoro Strait, a result that is consistent with a climatological run of a 0.1° global ocean general circulation model.


2008 ◽  
Vol 274 (3-4) ◽  
pp. 448-461 ◽  
Author(s):  
Mark Siddall ◽  
Samar Khatiwala ◽  
Tina van de Flierdt ◽  
Kevin Jones ◽  
Steven L. Goldstein ◽  
...  

2017 ◽  
Author(s):  
Hannah M. Horowitz ◽  
Daniel J. Jacob ◽  
Yanxu Zhang ◽  
Theodore S. Dibble ◽  
Franz Slemr ◽  
...  

Abstract. Mercury (Hg) is emitted to the atmosphere mainly as volatile elemental Hg0. Oxidation to water-soluble HgII controls Hg deposition to ecosystems. Here we implement a new mechanism for atmospheric Hg0 / HgII redox chemistry in the GEOS-Chem global model and examine the implications for the global atmospheric Hg budget and deposition patterns. Our simulation includes a new coupling of GEOS-Chem to an ocean general circulation model (MITgcm), enabling a global 3-D representation of atmosphere-ocean Hg0 / HgII cycling. We find that atomic bromine (Br) of marine organobromine origin is the main atmospheric Hg0 oxidant, and that second-stage HgBr oxidation is mainly by the NO2 and HO2 radicals. The resulting lifetime of tropospheric Hg0 against oxidation is 2.7 months, shorter than in previous models. Fast HgII atmospheric reduction must occur in order to match the ~ 6-month lifetime of Hg against deposition implied by the observed atmospheric variability of total gaseous mercury (TGM ≡ Hg0 + HgII(g)). We implement this reduction in GEOS-Chem as photolysis of aqueous-phase HgII-organic complexes in aerosols and clouds, resulting in a TGM lifetime of 5.2 months against deposition and matching both mean observed TGM and its variability. Model sensitivity analysis shows that the interhemispheric gradient of TGM, previously used to infer a longer Hg lifetime against deposition, is misleading because southern hemisphere Hg mainly originates from oceanic emissions rather than transport from the northern hemisphere. The model reproduces the observed seasonal TGM variation at northern mid-latitudes (maximum in February, minimum in September) driven by chemistry and oceanic evasion, but does not reproduce the lack of seasonality observed at southern hemisphere marine sites. Aircraft observations in the lowermost stratosphere show a strong TGM-ozone relationship indicative of fast Hg0 oxidation, but we show that this relationship provides only a weak test of Hg chemistry because it is also influenced by mixing. The model reproduces observed Hg wet deposition fluxes over North America, Europe, and China, including the maximum over the US Gulf Coast driven by HgBr oxidation by NO2 and HO2. Low Hg wet deposition observed over rural China is attributed to fast HgII reduction in the presence of high organic aerosol concentrations. We find that 80 % of global HgII deposition takes place over the oceans, reflecting the marine origin of Br and low concentrations of marine organics for HgII reduction, and most of HO2 and NO2 for second-stage HgBr oxidation.


Oceanography ◽  
2012 ◽  
Vol 25 (2) ◽  
pp. 20-29 ◽  
Author(s):  
Brian Arbic ◽  
James Richman ◽  
Jay Shriver ◽  
Patrick Timko ◽  
Joseph Metzger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document