A Model-Based Assessment and Design of a Tropical Indian Ocean Mooring Array

2007 ◽  
Vol 20 (13) ◽  
pp. 3269-3283 ◽  
Author(s):  
Peter R. Oke ◽  
Andreas Schiller

Abstract A series of observing system simulation experiments (OSSEs) are performed for the tropical Indian Ocean (±15° from the equator) using a simple analysis system. The analysis system projects an array of observations onto the dominant empirical orthogonal functions (EOFs) derived from an intermediate-resolution (2° × 0.5°) ocean circulation model. This system produces maps of the depth of the 20°C isotherm (D20), representing interannual variability, and the high-pass-filtered mixed layer depth (MLD), representing intraseasonal variability. The OSSEs are designed to assess the suitability of the proposed Indian Ocean surface mooring array for resolving intraseasonal to interannual variability. While the proposed array does a reasonable job of resolving the interannual time scales, it may not adequately resolve the intraseasonal time scales. A procedure is developed to rank the importance of observation locations by determining the observation array that best projects onto the EOFs used in the analysis system. OSSEs using an optimal array clearly outperform the OSSEs using the proposed array. The configuration of the optimal array is sensitive to the number of EOFs considered. The optimal array is also different for D20 and MLD, and depends on whether fixed observations are included that represent an idealized Argo array. Therefore, a relative frequency map of observation locations identified in 24 different OSSEs is compiled and a single, albeit less optimal, array that is referred to as a consolidated array is objectively determined. The consolidated array reflects the general features of the individual optimal arrays derived from all OSSEs. It is found that, in general, observations south of 8°S and off of the Indonesian coast are most important for resolving the interannual variability, while observations a few degrees south of the equator, and west of 75°E, and a few degrees north of the equator, and east of 75°E, are important for resolving the intraseasonal variability. In a series of OSSEs, the consolidated array is shown to outperform the proposed array for all configurations of the analysis system for both D20 and MLD.

2008 ◽  
Vol 25 (5) ◽  
pp. 794-807 ◽  
Author(s):  
Pavel Sakov ◽  
Peter R. Oke

Abstract A simple, versatile, computationally efficient ensemble-based method for objectively designing an observation array is described. The method seeks to compute the observation array that minimizes the analysis error variance, according to Kalman filter theory. While most elements of the method have been described elsewhere, this paper attempts to present a simple, yet comprehensive, recipe for array design based on an ensemble of anomalies that represents the background error covariance. The versatility of the method is demonstrated through a series of applications to the tropical Indian Ocean (TIO). The first application uses model-generated fields of high-pass-filtered mixed layer depth to design an array to monitor intraseasonal variability. The second uses gridded observations of sea level anomaly to design an array to monitor intraseasonal-to-interannual variability. For both applications, the objectively designed arrays are compared to an array that will soon be implemented under the auspices of the Climate Variability and Predictability–Global Ocean Observing System (CLIVAR–GOOS) Indian Ocean Panel (CG-IOP). The authors conclude that the CG-IOP array produces results that compare well to the objectively designed arrays for intraseasonal variability, and observations to the east and northeast of the TIO and south of India are most important for resolving intraseasonal variability. The authors also find that observations near 9°S, where seasonal Rossby waves dominate, are important for observing seasonal-to-interannual variability. The described method for objective array design can be applied to a wide range of geophysical applications where time series of gridded modeled or observed fields are available.


2012 ◽  
Vol 40 (3-4) ◽  
pp. 743-759 ◽  
Author(s):  
M. G. Keerthi ◽  
M. Lengaigne ◽  
J. Vialard ◽  
C. de Boyer Montégut ◽  
P. M. Muraleedharan

2010 ◽  
Vol 23 (24) ◽  
pp. 6542-6554 ◽  
Author(s):  
Rashmi Sharma ◽  
Neeraj Agarwal ◽  
Imran M. Momin ◽  
Sujit Basu ◽  
Vijay K. Agarwal

Abstract A long-period (15 yr) simulation of sea surface salinity (SSS) obtained from a hindcast run of an ocean general circulation model (OGCM) forced by the NCEP–NCAR daily reanalysis product is analyzed in the tropical Indian Ocean (TIO). The objective of the study is twofold: assess the capability of the model to provide realistic simulations of SSS and characterize the SSS variability in view of upcoming satellite salinity missions. Model fields are evaluated in terms of mean, standard deviation, and characteristic temporal scales of SSS variability. Results show that the standard deviations range from 0.2 to 1.5 psu, with larger values in regions with strong seasonal transitions of surface currents (south of India) and along the coast in the Bay of Bengal (strong Kelvin-wave-induced currents). Comparison of simulated SSS with collocated SSS measurements from the National Oceanographic Data Center and Argo floats resulted in a high correlation of 0.85 and a root-mean-square error (RMSE) of 0.4 psu. The correlations are quite high (>0.75) up to a depth of 300 m. Daily simulations of SSS compare well with a Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction (RAMA) buoy in the eastern equatorial Indian Ocean (1.5°S, 90°E) with an RMSE of 0.3 psu and a correlation better than 0.6. Model SSS compares well with observations at all time scales (intraseasonal, seasonal, and interannual). The decorrelation scales computed from model and buoy SSS suggest that the proposed 10-day sampling of future salinity sensors would be able to resolve much of the salinity variability at time scales longer than intraseasonal. This inference is significant in view of satellite salinity sensors, such as Soil Moisture and Ocean Salinity (SMOS) and Aquarius.


MAUSAM ◽  
2022 ◽  
Vol 46 (4) ◽  
pp. 409-422
Author(s):  
S. K. BEHERA ◽  
P. S. SALVEKAR

A simple reductA1 gravity wind-driven ocean circulation model is used to study the interannual variability in the upper layer of the Indian Ocean (24°S-23°N and 3S°E-IIS0E). The monthly mean wind stress for the period 1977-1986 are used as a forcing in the model. The model reproduces most of the observed features of the annual cycle of the upper layer circulation in the Indian Ocean when was forced with the ten-year average monthly mean wind. The circulation features and the model upper layer thickness show considerable interannual variability in most part of the basin; in particular, the Somali Current, the basin wide southern hemisphere gyre, the Equatorial Currents and the gyres in the Bay of Bengal. Six consecutive years starting from 1978 to 1983 which include two bad monsoon years of 1979 and 1982 are chosen to study the interannual variability. February circulation field shows stronger Equatorial Counter Currents in bad monsoon years, whereas. the cunents north of Madagascar flowing up to the African coast are found to be stronger in good monsoon years. The southward return flow from the Southern Gyre in August is strong and more to southern latitudes in the bad monsoon years. The flow circulated eastward to form another eddy east of Southern Gyre. The basin wide gyre of the southern hemisphere (SH) shows less variability in two consecutive normal years than in contrasting years.      


2015 ◽  
Vol 46 (7-8) ◽  
pp. 2633-2655 ◽  
Author(s):  
M. G. Keerthi ◽  
M. Lengaigne ◽  
K. Drushka ◽  
J. Vialard ◽  
C. de Boyer Montegut ◽  
...  

2006 ◽  
Vol 19 (6) ◽  
pp. 1013-1031 ◽  
Author(s):  
Galina Chirokova ◽  
Peter J. Webster

Abstract The work in this paper builds upon the relatively well-studied seasonal cycle of the Indian Ocean heat transport by investigating its interannual variability over a 41-yr period (1958–98). An intermediate, two-and-a-half-layer thermodynamically active ocean model with mixed layer physics is used in the investigation. The results of the study reveal that the Indian Ocean heat transport possesses strong variability at all time scales from intraseasonal (10–90 days) to interannual (more than one year). The seasonal cycle dominates the variability at all latitudes, the amplitude of the intraseasonal variability is similar to the seasonal cycle, and the amplitude of the interannual variability is about one-tenth of the seasonal cycle. Spectral analysis shows that a significant broadband biennial component in the interannual variability exists with considerable coherence in sign across the equator. While the mean annual heat transport shows a strong maximum between 10° and 20°S, interannual variability is relatively uniform over a broad latitudinal domain between 15°N and 10°S. The heat transport variability at all time scales is well explained by the Ekman heat transport, with especially good correlations at the intraseasonal time scales. The addition of the Indonesian Throughflow does not significantly affect the heat transport variability in the northern part of the ocean.


2012 ◽  
Vol 42 (4) ◽  
pp. 602-627 ◽  
Author(s):  
Laurie L. Trenary ◽  
Weiqing Han

Abstract The relative importance of local versus remote forcing on intraseasonal-to-interannual sea level and thermocline variability of the tropical south Indian Ocean (SIO) is systematically examined by performing a suite of controlled experiments using an ocean general circulation model and a linear ocean model. Particular emphasis is placed on the thermocline ridge of the Indian Ocean (TRIO; 5°–12°S, 50°–80°E). On interannual and seasonal time scales, sea level and thermocline variability within the TRIO region is primarily forced by winds over the Indian Ocean. Interannual variability is largely caused by westward propagating Rossby waves forced by Ekman pumping velocities east of the region. Seasonally, thermocline variability over the TRIO region is induced by a combination of local Ekman pumping and Rossby waves generated by winds from the east. Adjustment of the tropical SIO at both time scales generally follows linear theory and is captured by the first two baroclinic modes. Remote forcing from the Pacific via the oceanic bridge has significant influence on seasonal and interannual thermocline variability in the east basin of the SIO and weak impact on the TRIO region. On intraseasonal time scales, strong sea level and thermocline variability is found in the southeast tropical Indian Ocean, and it primarily arises from oceanic instabilities. In the TRIO region, intraseasonal sea level is relatively weak and results from Indian Ocean wind forcing. Forcing over the Pacific is the major cause for interannual variability of the Indonesian Throughflow (ITF) transport, whereas forcing over the Indian Ocean plays a larger role in determining seasonal and intraseasonal ITF variability.


2005 ◽  
Vol 35 (5) ◽  
pp. 601-615 ◽  
Author(s):  
M. A. Lucas ◽  
J. J. Hirschi ◽  
J. D. Stark ◽  
J. Marotzke

Abstract The response of an idealized ocean basin to variable buoyancy forcing is examined. A general circulation model that employs a Gent–McWilliams mixing parameterization is forced by a zonally constant restoring surface temperature profile, which varies with latitude and time over a period P. In each experiment, 17 different values of P are studied, ranging from 6 months to 32 000 yr. The model's meridional overturning circulation (MOC) exhibits a very strong response on all time scales greater than 15 yr, up to and including the longest forcing time scales examined. The peak-to-peak values of the MOC oscillations reach up to 125% of the steady-state maximum MOC and exhibit resonance-like behavior, with a maximum at centennial to millennial forcing periods (depending on the vertical diffusivity). This resonance-like behavior stems from the existence of two adjustment time scales, one of which is set by the vertical diffusion and the other of which is set by the basin width. Furthermore, the linearity of the response as well as its lag with the forcing varies with the forcing period. The considerable deviation from the quasi-equilibrium response at all time scales above 15 yr is surprising and suggests a potentially important role of the ocean circulation for climate, even at Milankovich time scales.


2020 ◽  
Vol 50 (8) ◽  
pp. 2359-2372
Author(s):  
Gengxin Chen ◽  
Dongxiao Wang ◽  
Weiqing Han ◽  
Ming Feng ◽  
Fan Wang ◽  
...  

AbstractIn the eastern tropical Indian Ocean, intraseasonal variability (ISV) affects the regional oceanography and marine ecosystems. Mooring and satellite observations documented two periods of unusually weak ISV during the past two decades, associated with suppressed baroclinic instability of the South Equatorial Current. Regression analysis and model simulations suggest that the exceptionally weak ISVs were caused primarily by the extreme El Niño events and modulated to a lesser extent by the Indian Ocean dipole. Additional observations confirm that the circulation balance in the Indo-Pacific Ocean was disrupted during the extreme El Niño events, impacting the Indonesian Throughflow Indian Ocean dynamics. This research provides substantial evidence for large-scale modes modulating ISV and the abnormal Indo-Pacific dynamical connection during extreme climate modes.


Sign in / Sign up

Export Citation Format

Share Document