scholarly journals The Plumbing of Land Surface Models: Benchmarking Model Performance

2015 ◽  
Vol 16 (3) ◽  
pp. 1425-1442 ◽  
Author(s):  
M. J. Best ◽  
G. Abramowitz ◽  
H. R. Johnson ◽  
A. J. Pitman ◽  
G. Balsamo ◽  
...  

Abstract The Protocol for the Analysis of Land Surface Models (PALS) Land Surface Model Benchmarking Evaluation Project (PLUMBER) was designed to be a land surface model (LSM) benchmarking intercomparison. Unlike the traditional methods of LSM evaluation or comparison, benchmarking uses a fundamentally different approach in that it sets expectations of performance in a range of metrics a priori—before model simulations are performed. This can lead to very different conclusions about LSM performance. For this study, both simple physically based models and empirical relationships were used as the benchmarks. Simulations were performed with 13 LSMs using atmospheric forcing for 20 sites, and then model performance relative to these benchmarks was examined. Results show that even for commonly used statistical metrics, the LSMs’ performance varies considerably when compared to the different benchmarks. All models outperform the simple physically based benchmarks, but for sensible heat flux the LSMs are themselves outperformed by an out-of-sample linear regression against downward shortwave radiation. While moisture information is clearly central to latent heat flux prediction, the LSMs are still outperformed by a three-variable nonlinear regression that uses instantaneous atmospheric humidity and temperature in addition to downward shortwave radiation. These results highlight the limitations of the prevailing paradigm of LSM evaluation that simply compares an LSM to observations and to other LSMs without a mechanism to objectively quantify the expectations of performance. The authors conclude that their results challenge the conceptual view of energy partitioning at the land surface.

2012 ◽  
Vol 5 (3) ◽  
pp. 819-827 ◽  
Author(s):  
G. Abramowitz

Abstract. This work examines different conceptions of land surface model benchmarking and the importance of internationally standardized evaluation experiments that specify data sets, variables, metrics and model resolutions. It additionally demonstrates how essential the definition of a priori expectations of model performance can be, based on the complexity of a model and the amount of information being provided to it, and gives an example of how these expectations might be quantified. Finally, the Protocol for the Analysis of Land Surface models (PALS) is introduced – a free, online land surface model benchmarking application that is structured to meet both of these goals.


2016 ◽  
Author(s):  
Valentijn R. N. Pauwels ◽  
Edoardo Daly

Abstract. It is generally accepted that the ground heat flux accounts for a significant fraction of the surface energy balance. In land surface models, the ground heat flux is estimated through a numerical solution of the heat conduction equation. Recent research has shown that this approach introduces errors in the estimation of the energy balance. In this paper, we calibrate a land surface model using a numerical solution of the heat conduction equation with four different vertical spatial resolutions. It is found that the thermal conductivity is the most sensitive parameter to the spatial resolution. More importantly, the thermal conductivity values are directly related to the spatial resolution, thus rendering any physical interpretation of this value irrelevant. The numerical solution is then replaced by an analytical solution. The results of the numerical and analytical solutions are identical when fine spatial and temporal resolutions are used. However, when using resolutions that are typical for land surface models, significant differences are found. When using the analytical solution, the ground heat flux is directly calculated without calculating the soil temperature profile. The calculation of the temperature at each node in the soil profile is thus no longer required, unless the model contains parameters that depend on the soil temperature, which in this study is not the case. The calibration is repeated, and thermal conductivity values independent of the vertical spatial resolution are obtained. The main conclusion of this study is that care must be taken when interpreting land surface model results that have been obtained using numerical ground heat flux estimates. The use of exact analytical solutions is recommended.


2016 ◽  
Vol 20 (11) ◽  
pp. 4689-4706 ◽  
Author(s):  
Valentijn R. N. Pauwels ◽  
Edoardo Daly

Abstract. It is generally accepted that the ground heat flux accounts for a significant fraction of the surface energy balance. In land surface models, the ground heat flux is typically estimated through a numerical solution of the heat conduction equation. Recent research has shown that this approach introduces errors in the estimation of the energy balance. In this paper, we calibrate a land surface model using a numerical solution of the heat conduction equation with four different vertical spatial resolutions. It is found that the thermal conductivity is the most sensitive parameter to the spatial resolution. More importantly, the thermal conductivity values are directly related to the spatial resolution, thus rendering any physical interpretation of this value irrelevant. The numerical solution is then replaced by an analytical solution. The results of the numerical and analytical solutions are identical when fine spatial and temporal resolutions are used. However, when using resolutions that are typical of land surface models, significant differences are found. When using the analytical solution, the ground heat flux is directly calculated without calculating the soil temperature profile. The calculation of the temperature at each node in the soil profile is thus no longer required, unless the model contains parameters that depend on the soil temperature, which in this study is not the case. The calibration is repeated, and thermal conductivity values independent of the vertical spatial resolution are obtained. The main conclusion of this study is that care must be taken when interpreting land surface model results that have been obtained using numerical ground heat flux estimates. The use of exact analytical solutions, when available, is recommended.


2012 ◽  
Vol 5 (1) ◽  
pp. 549-570 ◽  
Author(s):  
G. Abramowitz

Abstract. We examine different conceptions of land surface model benchmarking and illustrate the importance of internationally standardized evaluation experiments that specify data sets, variables, metrics and model resolutions. We additionally show how essential the definition of a priori expectations of model performance can be, based on the complexity of a model and the amount of information being provided to it, and give an example of how these expectations might be quantified. Finally, we introduce the Protocol for the Analysis of Land Surface models (PALS), a free, online land surface model benchmarking application, and show how it is structured to meet both of these goals.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1362 ◽  
Author(s):  
Mustafa Berk Duygu ◽  
Zuhal Akyürek

Soil moisture content is one of the most important parameters of hydrological studies. Cosmic-ray neutron sensing is a promising proximal soil moisture sensing technique at intermediate scale and high temporal resolution. In this study, we validate satellite soil moisture products for the period of March 2015 and December 2018 by using several existing Cosmic Ray Neutron Probe (CRNP) stations of the COSMOS database and a CRNP station that was installed in the south part of Turkey in October 2016. Soil moisture values, which were inferred from the CRNP station in Turkey, are also validated using a time domain reflectometer (TDR) installed at the same location and soil water content values obtained from a land surface model (Noah LSM) at various depths (0.1 m, 0.3 m, 0.6 m and 1.0 m). The CRNP has a very good correlation with TDR where both measurements show consistent changes in soil moisture due to storm events. Satellite soil moisture products obtained from the Soil Moisture and Ocean Salinity (SMOS), the METOP-A/B Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), Advanced Microwave Scanning Radiometer 2 (AMSR2), Climate Change Initiative (CCI) and a global land surface model Global Land Data Assimilation System (GLDAS) are compared with the soil moisture values obtained from CRNP stations. Coefficient of determination ( r 2 ) and unbiased root mean square error (ubRMSE) are used as the statistical measures. Triple Collocation (TC) was also performed by considering soil moisture values obtained from different soil moisture products and the CRNPs. The validation results are mainly influenced by the location of the sensor and the soil moisture retrieval algorithm of satellite products. The SMAP surface product produces the highest correlations and lowest errors especially in semi-arid areas whereas the ASCAT product provides better results in vegetated areas. Both global and local land surface models’ outputs are highly compatible with the CRNP soil moisture values.


2021 ◽  
Author(s):  
Mengyuan Mu ◽  
Martin De Kauwe ◽  
Anna Ukkola ◽  
Andy Pitman ◽  
Teresa Gimeno ◽  
...  

<p>Land surface models underpin coupled climate model projections of droughts and heatwaves. However, the lack of simultaneous observations of individual components of evapotranspiration, concurrent with root-zone soil moisture, has limited previous model evaluations. Here, we use a comprehensive set of observations from a water-limited site in southeastern Australia including both evapotranspiration and soil moisture to a depth of 4.5 m to evaluate the Community Atmosphere-Biosphere Land Exchange (CABLE) land surface model. We demonstrate that alternative process representations within CABLE had the capacity to improve simulated evapotranspiration, but not necessarily soil moisture dynamics - highlighting problems of model evaluations against water fluxes alone. Our best simulation was achieved by resolving a soil evaporation bias; a more realistic initialisation of the groundwater aquifer state; higher vertical soil resolution informed by observed soil properties; and further calibrating soil hydraulic conductivity. Despite these improvements, the role of the empirical soil moisture stress function in influencing the simulated water fluxes remained important: using a site calibrated function reduced the soil water stress on plants by 36 % during drought and 23 % at other times. These changes in CABLE not only improve the seasonal cycle of evapotranspiration, but also affect the latent and sensible heat fluxes during droughts and heatwaves. The range of parameterisations tested led to differences of ~150 W m<sup>-2</sup> in the simulated latent heat flux during a heatwave, implying a strong impact of parameterisations on the capacity for evaporative cooling and feedbacks to the boundary layer (when coupled). Overall, our results highlight the opportunity to advance the capability of land surface models to capture water cycle processes, particularly during meteorological extremes, when sufficient observations of both evapotranspiration fluxes and soil moisture profiles are available.</p>


2015 ◽  
Vol 8 (12) ◽  
pp. 10339-10363 ◽  
Author(s):  
D. L. Lombardozzi ◽  
M. J. B. Zeppel ◽  
R. A. Fisher ◽  
A. Tawfik

Abstract. The terrestrial biosphere regulates climate through carbon, water, and energy exchanges with the atmosphere. Land surface models estimate plant transpiration, which is actively regulated by stomatal pores, and provide projections essential for understanding Earth's carbon and water resources. Empirical evidence from 204 species suggests that significant amounts of water are lost through leaves at night, though land surface models typically reduce stomatal conductance to nearly zero at night. Here, we apply observed nighttime stomatal conductance values to a global land surface model, to better constrain carbon and water budgets. We find that our modifications increase transpiration up to 5 % globally, reduce modeled available soil moisture by up to 50 % in semi-arid regions, and increase the importance of the land surface on modulating energy fluxes. Carbon gain declines up to ~ 4 % globally and > 25 % in semi-arid regions. We advocate for realistic constraints of minimum stomatal conductance in future climate simulations, and widespread field observations to improve parameterizations.


2021 ◽  
Vol 25 (1) ◽  
pp. 447-471
Author(s):  
Mengyuan Mu ◽  
Martin G. De Kauwe ◽  
Anna M. Ukkola ◽  
Andy J. Pitman ◽  
Teresa E. Gimeno ◽  
...  

Abstract. Land surface models underpin coupled climate model projections of droughts and heatwaves. However, the lack of simultaneous observations of individual components of evapotranspiration, concurrent with root-zone soil moisture, has limited previous model evaluations. Here, we use a comprehensive set of observations from a water-limited site in southeastern Australia including both evapotranspiration and soil moisture to a depth of 4.5 m to evaluate the Community Atmosphere-Biosphere Land Exchange (CABLE) land surface model. We demonstrate that alternative process representations within CABLE had the capacity to improve simulated evapotranspiration, but not necessarily soil moisture dynamics–highlighting problems of model evaluations against water fluxes alone. Our best simulation was achieved by resolving a soil evaporation bias, using a more realistic initialisation of the groundwater aquifer state and higher vertical soil resolution informed by observed soil properties, and further calibrating soil hydraulic conductivity. Despite these improvements, the role of the empirical soil moisture stress function in influencing the simulated water fluxes remained important: using a site-calibrated function reduced the soil water stress on plants by 36 % during drought and 23 % at other times. These changes in CABLE not only improve the seasonal cycle of evapotranspiration but also affect the latent and sensible heat fluxes during droughts and heatwaves. The range of parameterisations tested led to differences of ∼150 W m−2 in the simulated latent heat flux during a heatwave, implying a strong impact of parameterisations on the capacity for evaporative cooling and feedbacks to the boundary layer (when coupled). Overall, our results highlight the opportunity to advance the capability of land surface models to capture water cycle processes, particularly during meteorological extremes, when sufficient observations of both evapotranspiration fluxes and soil moisture profiles are available.


2021 ◽  
Author(s):  
Daniela C.A. Lima ◽  
Rita M. Cardoso ◽  
Pedro M.M. Soares

<p>The Weather Research and Forecasting (WRF) model version 4.2 includes different land surface schemes, allowing a better representation of the land surface processes. Four simulations with the WRF model differing in land surface models and options were investigated as a sensitivity study over the European domain. These experiments span from 2004-2006 with a one-month spin-up and were performed at 0.11<sup>o</sup> horizontal resolution with 50 vertical levels, following the CORDEX guidelines. The lateral boundary conditions were driven by ERA5 reanalysis from European Centre for Medium-Range Weather Forecasts. For the first experiment, the Noah land surface model was used. For the remaining simulations, the Noah-MP (multi-physics) land surface model was used with different runoff and groundwater options: (1) original surface and subsurface runoff (free drainage), (2) TOPMODEL with groundwater and (3) Miguez-Macho & Fan groundwater scheme. The physical parameterizations options are the same for all simulations. These experiments allow the analysis of the sensitivity of different land surface options and to understand how the representation of land surface processes impacts on the atmosphere properties. This study focusses on the investigation of land-atmosphere feedbacks trough the analysis of the soil moisture – temperature and soil moisture – precipitation interactions, latent and sensible heat fluxes, and moisture fluxes. The influence of different surface model options on atmospheric boundary layer is also explored.</p><p>Acknowledgements. The authors wish to acknowledge the LEADING (PTDC/CTA-MET/28914/2017) project funded by FCT. The authors would like to acknowledge the financial support FCT through project UIDB/50019/2020 – Instituto Dom Luiz.</p>


2020 ◽  
Author(s):  
Mathew J. Lipson ◽  
Sue Grimmond ◽  
Martin J. Best ◽  
Gab Abramowitz ◽  
Andrew J. Pitman ◽  
...  

<p>We welcome participants in the new project to evaluate land surface models (LSMs) in urban areas at multiple sites. Urban-PLUMBER will evaluate both specialised urban parameterisations and general LSMs typically used in weather/climate simulations. Assessment will be offline (uncoupled with an atmosphere model), with driving meteorology and general site characteristics provided at the neighbourhood scale.</p><p>The project builds upon the PLUMBER project (PALS Land sUrface Model Benchmarking Evaluation pRoject) by assessing models using simple benchmarks as well as error metrics. The PLUMBER experience indicates benchmarking can reveal where LSMs are not utilising available information effectively, helping focus future model development.</p><p>The project’s two phases are: 1) initial evaluation at one suburban site and 2) evaluation across multiple sites with varying degrees urbanised and vegetation/pervious fractions. The project will establish where on the urbanised/vegetated continuum models are more skilful, and assess the progress made in modelling urban areas over the last decade since the last major offline urban model comparison project (PILPS-Urban).</p><p>We expect the project to benefit both participating modelling groups and improve understanding of modelling urban areas as a whole. Contact us to get involved.</p>


Sign in / Sign up

Export Citation Format

Share Document