scholarly journals Large-Scale Surface Responses during European Dry Spells Diagnosed from Land Surface Temperature

2016 ◽  
Vol 17 (3) ◽  
pp. 975-993 ◽  
Author(s):  
Sonja S. Folwell ◽  
Phil P. Harris ◽  
Christopher M. Taylor

Abstract Soil moisture plays a fundamental role in regulating the summertime surface energy balance across Europe. Understanding the spatial and temporal behavior in soil moisture and its control on evapotranspiration (ET) is critically important and influences heat wave events. Global climate models (GCMs) exhibit a broad range of land responses to soil moisture in regions that lie between wet and dry soil regimes. In situ observations of soil moisture and evaporation are limited in space, and given the spatial heterogeneity of the landscape, are unrepresentative of the GCM gridbox scale. On the other hand, satelliteborne observations of land surface temperature (LST) can provide important information at the larger scale. As a key component of the surface energy balance, LST is used to provide an indirect measure of surface drying across the landscape. To isolate soil moisture constraints on evaporation, time series of clear-sky LST are analyzed during dry spells lasting at least 10 days from March to October. Averaged over thousands of dry spell events across Europe, and accounting for atmospheric temperature variations, regional surface warming of between 0.5 and 0.8 K is observed over the first 10 days of a dry spell. Land surface temperatures are found to be sensitive to antecedent rainfall; stronger dry spell warming rates are observed following relatively wet months, indicative of soil moisture memory effects on the monthly time scale. Furthermore, clear differences in surface warming rate are found between cropland and forest, consistent with contrasting hydrological and aerodynamic properties.

2017 ◽  
Vol 18 (5) ◽  
pp. 1453-1470 ◽  
Author(s):  
Phil P. Harris ◽  
Sonja S. Folwell ◽  
Belen Gallego-Elvira ◽  
José Rodríguez ◽  
Sean Milton ◽  
...  

Abstract Soil moisture availability exerts control over the land surface energy partition in parts of Europe. However, determining the strength and variability of this control is impeded by the lack of reliable evaporation observations at the continental scale. This makes it difficult to refine the broad range of soil moisture–evaporation behaviors across global climate models (GCMs). Previous studies show that satellite observations of land surface temperature (LST) during rain-free dry spells can be used to diagnose evaporation regimes at the GCM gridbox scale. This relative warming rate (RWR) diagnostic quantifies the increase in dry spell LST relative to air temperature and is used here to evaluate a land surface model (JULES) both offline and coupled to a GCM (HadGEM3-A). It is shown that RWR can be calculated using outputs from an atmospheric GCM provided the satellite clear-sky sampling bias is incorporated. Both offline JULES and HadGEM3-A reproduce the observed seasonal and regional RWR variations, but with weak springtime RWRs in central Europe. This coincides with sustained bare soil evaporation (Ebs) during dry spells, reflecting previous site-level JULES studies in Europe. To assess whether RWR can discriminate between surface descriptions, the bare soil surface conductance and the vegetation root profile are revised to limit Ebs. This increases RWR by increasing the occurrence of soil moisture–limited dry spells, yielding more realistic springtime RWRs as a function of antecedent precipitation but poorer relationships in summer. This study demonstrates the potential for using satellite LST to assess evaporation regimes in climate models.


2012 ◽  
Vol 16 (7) ◽  
pp. 1833-1844 ◽  
Author(s):  
F. Alkhaier ◽  
Z. Su ◽  
G. N. Flerchinger

Abstract. The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Moreover, these measurements can help to include the effect of shallow groundwater on surface energy balance within land surface models and climate studies, which broadens the methods that yield more reliable and informative results. To examine the capacity of MODIS in detecting the effect of shallow groundwater on land surface temperature and the surface energy balance in an area within Al-Balikh River basin in northern Syria, we studied the interrelationship between in-situ measured water table depths and land surface temperatures measured by MODIS. We, also, used the Surface Energy Balance System (SEBS) to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. We found out that the daytime temperature increased while the nighttime temperature decreased when the depth of the water table increased. And, when the water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. This concords with the findings of a companion paper (Alkhaier et al., 2012). The observed clear relationships were the result of meeting both conditions that were concluded in the companion paper, i.e. high potential evaporation and big contrast in day-night temperature. Moreover, the prevailing conditions in this study area helped SEBS to yield accurate estimates. Under bare soil conditions and under the prevailing weather conditions, we conclude that MODIS is suitable for detecting the effect of shallow groundwater because it has proper imaging times and adequate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.


2019 ◽  
Vol 11 (24) ◽  
pp. 3044 ◽  
Author(s):  
João P. A. Martins ◽  
Isabel F. Trigo ◽  
Nicolas Ghilain ◽  
Carlos Jimenez ◽  
Frank-M. Göttsche ◽  
...  

A new all-weather land surface temperature (LST) product derived at the Satellite Application Facility on Land Surface Analysis (LSA-SAF) is presented. It is the first all-weather LST product based on visible and infrared observations combining clear-sky LST retrieved from the Spinning Enhanced Visible and Infrared Imager on Meteosat Second Generation (MSG/SEVIRI) infrared (IR) measurements with LST estimated with a land surface energy balance (EB) model to fill gaps caused by clouds. The EB model solves the surface energy balance mostly using products derived at LSA-SAF. The new product is compared with in situ observations made at 3 dedicated validation stations, and with a microwave (MW)-based LST product derived from Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) measurements. The validation against in-situ LST indicates an accuracy of the new product between -0.8 K and 1.1 K and a precision between 1.0 K and 1.4 K, generally showing a better performance than the MW product. The EB model shows some limitations concerning the representation of the LST diurnal cycle. Comparisons with MW LST generally show higher LST of the new product over desert areas, and lower LST over tropical regions. Several other imagers provide suitable measurements for implementing the proposed methodology, which offers the potential to obtain a global, nearly gap-free LST product.


2011 ◽  
Vol 8 (5) ◽  
pp. 8671-8700 ◽  
Author(s):  
F. Alkhaier ◽  
Z. Su ◽  
G. N. Flerchinger

Abstract. The possibility of observing shallow groundwater depth and areal extent using satellite measurements can support groundwater models and vast irrigation systems management. Besides, these measurements help bringing groundwater effect on surface energy balance within land surface models and climate studies. To inspect the MODIS capacity of detecting shallow groundwater effect on land surface temperature and surface energy balance in an area within Al-Balikh River basin in northern Syria, we investigated the interrelationship between in-situ measured water table depths and land surface temperatures of MODIS. Further, we used the Surface Energy Balance System (SEBS) to calculate surface energy fluxes, evaporative fraction and daily evaporation, and inspected their relationships with water table depths. In agreement with the findings of a companion paper (Alkhaier et al., 2011), we found that daytime temperature increased and nighttime temperature decreased with increasing water table depth. Where water table depth increased, net radiation, latent and ground heat fluxes, evaporative fraction and daily evaporation decreased, while sensible heat flux increased. The clear observed relationships resulted from meeting both conditions concluded in the companion paper, i.e. high potential evaporation and big contrast in air temperature. Moreover, the prevailing conditions in this study area helped SEBS producing accurate estimates. We conclude that MODIS is suitable for shallow groundwater effect detection since it has proper imaging times and appropriate sensor accuracy; nevertheless, its coarse spatial resolution is disadvantageous.


Author(s):  
Joao Paulo A. Martins ◽  
Isabel Trigo ◽  
Nicolas Ghilain ◽  
Carlos Jimenez ◽  
Frank-M. Goettsche ◽  
...  

An all-weather land surface temperature (LST) product derived at the Satellite Application Facility on Land Surface Analysis (LSA-SAF) is presented. The product is based on clear-sky LST retrieved from MSG/SEVIRI infrared (IR) measurements, complemented by LST estimated with a land surface energy balance (EB) model to fill gaps caused by clouds. The EB model solves the surface energy balance mostly using products derived at LSA-SAF. The new product is compared with in situ observations made at 3 dedicated validation stations, and with a Microwave (MW) based LST product derived from AMSR-E measurements. The validation against in-situ LST indicates an accuracy of the new product between -0.8 K and 1.1 K and a precision between 1.0 K and 1.4 K, generally showing a better performance than the MW product. The EB model shows some limitations concerning the representation of the LST diurnal cycle. Comparisons with MW LST generally show higher LST of the new product over desert areas, and lower LST over tropical regions. Several other imagers provide suitable measurements for implementing the proposed methodology, which offers the potential to obtain a global, nearly gap-free LST product.


Sign in / Sign up

Export Citation Format

Share Document