scholarly journals The Hydrologic Effects of Synchronous El Niño–Southern Oscillation and Subtropical Indian Ocean Dipole Events over Southern Africa

2017 ◽  
Vol 18 (9) ◽  
pp. 2407-2424 ◽  
Author(s):  
Andrew Hoell ◽  
Andrea E. Gaughan ◽  
Shraddhanand Shukla ◽  
Tamuka Magadzire

Abstract Southern Africa precipitation during December–March (DJFM), the height of the rainy season, is closely related with two modes of climate variability, El Niño–Southern Oscillation (ENSO) and the subtropical Indian Ocean dipole (SIOD). Recent research has found that the combined effects of ENSO and SIOD phasing are linked with changes to the regional southern Africa atmospheric circulation beyond the individual effects of either ENSO or SIOD alone. Here, the authors extend the recent research and examine the southern Africa land surface hydrology associated with the synchronous effects of ENSO and SIOD events using a macroscale hydrologic model, with particular emphasis on the evolution of the hydrologic conditions over three critical Transfrontier Conservation Areas: the Kavango–Zambezi Conservation Area, the Greater Limpopo Transfrontier Park, and the Kgalagadi Transfrontier Park. A better understanding of the climatic effects of ENSO and SIOD phase combinations is important for regional-scale transboundary conservation planning, especially for southern Africa, where both humans and wildlife are dependent on the timing and amount of precipitation. Opposing ENSO and SIOD phase combinations (e.g., El Niño and a negative SIOD or La Niña and a positive SIOD) result in strong southern Africa climate impacts during DJFM. The strong instantaneous regional precipitation and near-surface air temperature anomalies during opposing ENSO and SIOD phase combinations lead to significant soil moisture and evapotranspiration anomalies in the year following the ENSO event. By contrast, when ENSO and SIOD are in the same phase (e.g., El Niño and a positive SIOD or La Niña and a negative SIOD), the southern Africa climate impacts during DJFM are minimal.

2018 ◽  
Vol 31 (11) ◽  
pp. 4463-4482 ◽  
Author(s):  
Andrew Hoell ◽  
Mathew Barlow ◽  
Taiyi Xu ◽  
Tao Zhang

Abstract The sensitivity of southwest Asia (25°–40°N, 40°–70°E) precipitation during the November–April rainy season to four types of El Niño–Southern Oscillation (ENSO) events, eastern Pacific (EP) and central Pacific (CP) El Niño and La Niña, is assessed using an ensemble of atmospheric model simulations forced by 1979–2015 boundary conditions. Sensitivity is assessed in terms of 1) the spread of precipitation across the ensemble members around the ensemble mean, 2) the probability of precipitation falling into the upper and lower terciles of the historical distribution, and 3) the relationship between the tropical atmosphere and southwest Asia precipitation during ENSO. During CP La Niña, the magnitude of the below-average mean precipitation exceeds the magnitude of the precipitation spread, thereby conditioning the probability of lower-tercile southwest Asia precipitation to greater than 70%. By contrast, EP La Niña does not alter the odds of southwest Asia precipitation terciles, as the magnitude of the near-zero mean precipitation is overwhelmed by the magnitude of the precipitation spread. EP and CP El Niño similarly result in above-average mean precipitation whose magnitude approaches the magnitude of the precipitation spread, thereby conditioning the probability of upper-tercile southwest Asia precipitation to around 50% region-wide. However, the notable effect of the precipitation spread during El Niño allows for a 20%–30% probability that the regional precipitation falls into the lower tercile. ENSO types simultaneously modify the probability of eastern Indian Ocean precipitation and southwest Asia precipitation, supporting the hypothesis that the tropical eastern Indian Ocean atmosphere serves as the medium by which ENSO forcing is communicated to southwest Asia.


2022 ◽  
Author(s):  
Paul C. Rivera

An alternative physical mechanism is proposed to describe the occurrence of the episodic El Nino Southern Oscillation (ENSO) and La Nina climatic phenomena. This is based on the earthquake-perturbed obliquity change (EPOCH) model previously discovered as a major cause of the global climate change problem. Massive quakes impart a very strong oceanic force that can move the moon which in turn pulls the earth’s axis and change the planetary obliquity. Analysis of the annual geomagnetic north-pole shift and global seismic data revealed this previously undiscovered force. Using a higher obliquity in the global climate model EdGCM and constant greenhouse gas forcing showed that the seismic-induced polar motion and associated enhanced obliquity could be the major mechanism governing the mysterious climate anomalies attributed to El Nino and La Nina cycles.


2008 ◽  
Vol 4 (1) ◽  
pp. 173-211
Author(s):  
E. Dietze ◽  
A. Kleber ◽  
M. Schwikowski

Abstract. El Niño-Southern Oscillation (ENSO) is an important element of earth's ocean-climate system. To further understand its past variability, proxy records from climate archives need to be studied. Ice cores from high alpine glaciers may contain high resolution ENSO proxy information, given the glacier site is climatologically sensitive to ENSO. We investigated signals of ENSO in the climate of the subtropical Andes in the proximity of Cerro Tapado glacier (30°08' S, 69°55' W, 5550 m a.s.l.), where a 36 m long ice core was drilled in 1999 (Ginot, 2001). We used annual and semi-annual precipitation and temperature time series from regional meteorological stations and interpolated grids for correlation analyses with ENSO indices and ice core-derived proxies (net accumulation, stable isotope ratio δ18O, major ion concentrations). The total time period investigated here comprises 1900 to 2000, but varies with data sets. Only in the western, i.e. Mediterranean Andes precipitation is higher (lower) during El Niño (La Niña) events, especially at higher altitudes, due to the latitudinal shift of frontal activity during austral winters. However, the temperature response to ENSO is more stable in space and time, being higher (lower) during El Niño (La Niña) events in most of the subtropical Andes all year long. From a northwest to southeast teleconnection gradient, we suggest a regional water vapour feedback triggers temperature anomalies as a function of ENSO-related changes in regional pressure systems, Pacific sea surface temperature and tropical moisture input. Tapado glacier ice proxies are found to be predominantly connected to eastern Andean summer rain climate, which contradicts previous studies and the modern mean spatial boundary between subtropical summer and winter rain climate derived from the grid data. The only ice core proxy showing a response to ENSO is the major ion concentrations, via local temperature indicating reduced sublimation and mineral dust input during El Niño years.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1437
Author(s):  
Mary T. Kayano ◽  
Wilmar L. Cerón ◽  
Rita V. Andreoli ◽  
Rodrigo A. F. Souza ◽  
Itamara P. Souza ◽  
...  

This paper examines the effects of the tropical Pacific Ocean (TPO) and Indian Ocean Dipole (IOD) modes in the interannual variations of austral spring rainfall over South America (SA). The TPO mode refers to the El Niño-Southern Oscillation (ENSO). The isolated effects between IOD and TPO were estimated, events were chosen from the residual TPO (R-TPO) or residual IOD (R-IOD), and the IOD (TPO) effects for the R-TPO (R-IOD) composites were removed from the variables. One relevant result was the nonlinear precipitation response to R-TPO and R-IOD. This feature was accentuated for the R-IOD composites. The positive R-IOD composite showed significant negative precipitation anomalies along equatorial SA east of 55° W and in subtropical western SA, and showed positive anomalies in northwestern SA and central Brazil. The negative R-IOD composite indicated significant positive precipitation anomalies in northwestern Amazon, central–eastern Brazil north of 20° S, and western subtropical SA, and negative anomalies were found in western SA south of 30° S. This nonlinearity was likely due to the distinct atmospheric circulation responses to the anomalous heating sources located in longitudinally distinct regions: the western tropical Indian Ocean and areas neighboring Indonesia. The results obtained in this study might be relevant for climate monitoring and modeling studies.


2013 ◽  
Vol 10 (10) ◽  
pp. 6677-6698 ◽  
Author(s):  
J. C. Currie ◽  
M. Lengaigne ◽  
J. Vialard ◽  
D. M. Kaplan ◽  
O. Aumont ◽  
...  

Abstract. The Indian Ocean Dipole (IOD) and the El Niño/Southern Oscillation (ENSO) are independent climate modes, which frequently co-occur, driving significant interannual changes within the Indian Ocean. We use a four-decade hindcast from a coupled biophysical ocean general circulation model, to disentangle patterns of chlorophyll anomalies driven by these two climate modes. Comparisons with remotely sensed records show that the simulation competently reproduces the chlorophyll seasonal cycle, as well as open-ocean anomalies during the 1997/1998 ENSO and IOD event. Results suggest that anomalous surface and euphotic-layer chlorophyll blooms in the eastern equatorial Indian Ocean in fall, and southern Bay of Bengal in winter, are primarily related to IOD forcing. A negative influence of IOD on chlorophyll concentrations is shown in a region around the southern tip of India in fall. IOD also depresses depth-integrated chlorophyll in the 5–10° S thermocline ridge region, yet the signal is negligible in surface chlorophyll. The only investigated region where ENSO has a greater influence on chlorophyll than does IOD, is in the Somalia upwelling region, where it causes a decrease in fall and winter chlorophyll by reducing local upwelling winds. Yet unlike most other regions examined, the combined explanatory power of IOD and ENSO in predicting depth-integrated chlorophyll anomalies is relatively low in this region, suggestive that other drivers are important there. We show that the chlorophyll impact of climate indices is frequently asymmetric, with a general tendency for larger positive than negative chlorophyll anomalies. Our results suggest that ENSO and IOD cause significant and predictable regional re-organisation of chlorophyll via their influence on near-surface oceanography. Resolving the details of these effects should improve our understanding, and eventually gain predictability, of interannual changes in Indian Ocean productivity, fisheries, ecosystems and carbon budgets.


2007 ◽  
Vol 20 (13) ◽  
pp. 2872-2880 ◽  
Author(s):  
Gary Meyers ◽  
Peter McIntosh ◽  
Lidia Pigot ◽  
Mike Pook

Abstract The Indian Ocean zonal dipole is a mode of variability in sea surface temperature that seriously affects the climate of many nations around the Indian Ocean rim, as well as the global climate system. It has been the subject of increasing research, and sometimes of scientific debate concerning its existence/nonexistence and dependence/independence on/from the El Niño–Southern Oscillation, since it was first clearly identified in Nature in 1999. Much of the debate occurred because people did not agree on what years are the El Niño or La Niña years, not to mention the newly defined years of the positive or negative dipole. A method that identifies when the positive or negative extrema of the El Niño–Southern Oscillation and Indian Ocean dipole occur is proposed, and this method is used to classify each year from 1876 to 1999. The method is statistical in nature, but has a strong basis on the oceanic physical mechanisms that control the variability of the near-equatorial Indo-Pacific basin. Early in the study it was found that some years could not be clearly classified due to strong decadal variation; these years also must be recognized, along with the reason for their ambiguity. The sensitivity of the classification of years is tested by calculating composite maps of the Indo-Pacific sea surface temperature anomaly and the probability of below median Australian rainfall for different categories of the El Niño–Indian Ocean relationship.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Todd W. Moore ◽  
Jennifer M. St. Clair ◽  
Tiffany A. DeBoer

Winter and spring tornado activity tends to be heightened during the La Niña phase of the El Niño/Southern Oscillation and suppressed during the El Niño phase. Despite these tendencies, some La Niña seasons have fewer tornadoes than expected and some El Niño seasons have more than expected. To gain insight into such anomalous seasons, the two La Niña winters and springs with the fewest tornadoes and the two El Niño winters and springs with the most tornadoes between 1979 and 2016 are identified and analyzed in this study. The relationships between daily tornado count and the Global Wind Oscillation and Madden-Julian Oscillation in these anomalous seasons are also explored. Lastly, seasonal and daily composites of upper-level flow, low-level flow and humidity, and atmospheric instability are generated to describe the environmental conditions in the anomalous seasons. The results of this study highlight the potential for large numbers of tornadoes to occur in a season if favorable conditions emerge in association with individual synoptic-scale events, even during phases of the El Niño/Southern Oscillation, Global Wind Oscillation, and Madden-Julian Oscillation that seem to be unfavorable for tornadoes. They also highlight the potential for anomalously few tornadoes in a season even when the oscillations are in favorable phases.


Sign in / Sign up

Export Citation Format

Share Document