scholarly journals The Impact of Obliquity Change on El Niño Southern Oscillation (ENSO) and La Niña Climate Episodes

2022 ◽  
Author(s):  
Paul C. Rivera

An alternative physical mechanism is proposed to describe the occurrence of the episodic El Nino Southern Oscillation (ENSO) and La Nina climatic phenomena. This is based on the earthquake-perturbed obliquity change (EPOCH) model previously discovered as a major cause of the global climate change problem. Massive quakes impart a very strong oceanic force that can move the moon which in turn pulls the earth’s axis and change the planetary obliquity. Analysis of the annual geomagnetic north-pole shift and global seismic data revealed this previously undiscovered force. Using a higher obliquity in the global climate model EdGCM and constant greenhouse gas forcing showed that the seismic-induced polar motion and associated enhanced obliquity could be the major mechanism governing the mysterious climate anomalies attributed to El Nino and La Nina cycles.

2021 ◽  
Author(s):  
David Henriques da Matta ◽  
Caio Augusto dos Santos Coelho ◽  
Leydson Lara dos Santos ◽  
Luis Fernando Stone ◽  
Alexandre Bryan Heinemann

Abstract Rainfall and temperature are the two key parameters of crop development. Studying the characteristics of these parameters under El Niño-Southern Oscillation (ENSO) conditions is important to better understand the impacts of the different phases of this phenomenon (El Niño, Neutral, and La Niña conditions) on agriculture. This study analyzes 32 years (1980–2011) of climatic data from 128 weather stations across Goiás State in Brazil to determine the behavior of temperature and rainfall time series over three periods (1980–1989; 1990–1999 and 2000–2011) under El Niño, Neutral, and La Niña conditions. The analysis revealed no major impacts of ENSO conditions on accumulated rainfall characteristics, a feature particularly marked in the most recent period (2000–2011). ENSO impacting temperature was identified but presented considerable variability across the periods investigated. These impacts were marked in the first two periods as for maximum temperature and increased from the first to the last period as for minimum temperature. These features were noticed in both analyses in the entire Goiás State and most of the investigated mega-regions, except for the East and Northeast mega-regions as for minimum temperature. There were increases in maximum temperature values throughout the rainfed season (October to March) for all ENSO conditions and investigated periods. Minimum temperature also increased across the three investigated periods, and this was marked in the beginning of the rainfed season (October) under El Niño and Neutral conditions.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Todd W. Moore ◽  
Jennifer M. St. Clair ◽  
Tiffany A. DeBoer

Winter and spring tornado activity tends to be heightened during the La Niña phase of the El Niño/Southern Oscillation and suppressed during the El Niño phase. Despite these tendencies, some La Niña seasons have fewer tornadoes than expected and some El Niño seasons have more than expected. To gain insight into such anomalous seasons, the two La Niña winters and springs with the fewest tornadoes and the two El Niño winters and springs with the most tornadoes between 1979 and 2016 are identified and analyzed in this study. The relationships between daily tornado count and the Global Wind Oscillation and Madden-Julian Oscillation in these anomalous seasons are also explored. Lastly, seasonal and daily composites of upper-level flow, low-level flow and humidity, and atmospheric instability are generated to describe the environmental conditions in the anomalous seasons. The results of this study highlight the potential for large numbers of tornadoes to occur in a season if favorable conditions emerge in association with individual synoptic-scale events, even during phases of the El Niño/Southern Oscillation, Global Wind Oscillation, and Madden-Julian Oscillation that seem to be unfavorable for tornadoes. They also highlight the potential for anomalously few tornadoes in a season even when the oscillations are in favorable phases.


2021 ◽  
Vol 121 (2) ◽  
pp. 64-77
Author(s):  
Robert W. Ritzi ◽  
Lauren M. Roberson ◽  
Michael Bottomley

Continental-scale studies of North America suggest that the El Niño Southern Oscillation (ENSO) can cause winters to be warmer, with less precipitation, during El Niño conditions and colder, with more precipitation, during La Niña conditions in the Midwest United States. Two sources of historical records of precipitation and temperature in southwest Ohio from 1896 to 2016 were analyzed. Three statistical methodologies were used to test the hypothesis that anomalies in winter temperature and precipitation occurred in relation to ENSO phases. Eighty percent of El Niño winters had below-average winter precipitation; the average anomaly was −5 cm. Precipitation decreased with increase in El Niño strength as measured by the Multivariate ENSO Index (MEI). These results were statistically significant beyond the 95% level. However, variation in MEI only accounted for 3% of the overall variability in winter precipitation. Many of the drier winters on record, including the extrema, occurred during neutral winters. During La Niña winters precipitation was not statistically significantly different from that in neutral winters. Winter temperature was not statistically significantly different during El Niño and La Niña winters within the century of record. The results were consistent between separate analyses of data from the 2 different sources.


2010 ◽  
Vol 61 (7) ◽  
pp. 528 ◽  
Author(s):  
P. T. Hayman ◽  
A. M. Whitbread ◽  
D. L. Gobbett

The cropping simulation model APSIM (Agricultural Production Systems Simulator) was used to investigate the pattern of seasonal moisture stress during the growing season for four medium- to high-rainfall regions and four low-rainfall regions in the southern Australian grains belt over the period 1906–2007. Cluster analysis of the pattern of crop water stress experienced by each simulated crop was used to devise season types for the study sites. Average crop moisture stress for two periods up to grain filling, i.e. germination to 600°C days of thermal accumulation (~Zadoks 0–32) and from 600 to 1200 days of thermal accumulation (~Zadoks 32–71), was used to devise a classification of season type: low moisture stress early and late (L-L), low early and high late (L-H), high early and low late (H-L) and high early and late (H-H). Using regional rainfall we found that El Niño events are associated with double the risk of the season being in the lowest tercile from 33 to 67% and La Niña events increase the chance of being in the top tercile to 50%. Although there was a wide range of simulated yields in El Niño and La Niña years, for most sites the average yields were lower in El Niño years and higher in La Niña years. For most sites in the study 6 or 7 of the worst 10 years were El Niño, 3 Neutral and 1 or nil cases were La Niña events. This contrasts with a pattern assuming no El Niño Southern Oscillation (ENSO) influence of 2 El Niño, 6 Neutral and 2 La Niña events. Analysis of the relationship of season types identified by the cluster analysis to ENSO showed significant results for high-rainfall sites but not for low-rainfall sites. One of the reasons for this is that in low-rainfall sites, moisture stress occurs in most seasons. We conclude that there is good reason for farmers and advisers in South Australia to pay attention to a forecast of ENSO for the coming season as one part of their risk management strategy. We conclude on the need to think clearly about drought and aridity in these low-rainfall environments and comment on how this analysis further questions canopy management as a means of dealing with drought risk.


2018 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Alexander Y. Elake ◽  
Merlin Talahatu ◽  
Pieldrie Nanlohy

Analisis korelasi multivariabel antara curah hujan diMaluku (Ambon, Tual, dan Saumlaki) dengan anomali suhu the El Niño Southern Oscillation (ENSO) di daerah Niño 3.4 Samudera Pasifik, angin Monsun di wilayah Maluku serta anomali suhu Dipole Mode Event (DME) di Samudera Hindia telah dilakukan dengan analisa korelasi parsial dan berganda. Analisis tersebut dilakukan untuk data selama 10 tahun kalender yaitu dari Januari 2005 – Desember 2014 yang meliputi dua periode kejadian El Niño (tahun 2006/07 dan 2009/10), dua tahun fasa ENSO Normal (2005 dan 2013), dan tiga periode La Niña (2007/08, 2010/11, dan 2011/12). Pengaruh interaksi ENSO, Monsun dan Dipole Mode terhadap curah hujan Maluku ditunjukkan oleh nilai koefisien korelasi berganda (rb1) yang berkisar antara 0,748 – 0,999 dan nilai koefisien penentu berganda (rpb1) dengan kisaran 55,9–99,8% pada fasa El Niño. Sedangkan untuk fasa ENSO Normal nilainya berturut-turut rb2 = 0,807–0,905 dan rpb2 = 64,6 – 81,9%, dan untuk fasa fasa La Niña adalah rb3 = 0,674–0,964 dan rpb3 = 45,4– 92,9%. Pengaruh ENSO yang dominan terhadap curah hujan Ambon terlihat pada fasa El Niño dan fasa La Niña, sedangkan Monsun lebih dominan pada ENSO Normal. Untuk Tual, pengaruh ENSO, Monsun, dan Dipole Mode sama-sama terlihat pada fasa El Niño dan fasa La Niña, sedangkan Monsun lebih dominan dari Dipole Mode pada ENSO Normal. Sementara pengaruh Dipole Mode sangat dominan terhadap curah hujan Saumlaki.


2015 ◽  
Vol 10 (2) ◽  
pp. 75
Author(s):  
Faisal Hamzah ◽  
Eko Susilo ◽  
Iis Triyulianti ◽  
Agus Setiawan

Samudera Pasifik berperan penting dalam siklus El-Nino Southern Oscillation (ENSO) dan berpengaruh signifikan pada kegiatan penangkapan tuna di Indonesia, khususnya ikan Cakalang. Penelitian ini bertujuan mengetahui pola pergerakan zona konvergensi di Samudera Pasifik bagian Barat dengan mengamati pergerakan parameter oseanografi seperti suhu, salinitas, klorofil-a, dan produktivitas primer. Data parameter oseanografi tersebut terdiri dari data insitu, data satelit maupun hasil pemodelan. Hasil analisis menunjukan adanya pergerakan zona konvergensi di Barat Pasifik yang dicirikan variabel proksi yaitu isotermal 29°C, isohalin 34,6 psu, konsenrasi klorofil-a sebesar 0,1 mg/m3 dan NPP 300 mgC/m2/day. Pola pergerakan zona konvergensi baik secara horisontal maupun vertikal dipengaruhi oleh ENSO. Pada saat terjadi La-Nina massa air dengan suhu yang hangat bergeser ke arah Barat yang diikuti dengan meningkatnya kesuburan perairan. Pergerakan vertikal massa air hangat terjadi pada kedalaman 25-75 m (suhu) dan 50 m (salinitas). Namun pada saat El-Nino massa air hangat bergerak ke arah Timur Samudera Pasifik. Fluktuasi produksi tangkapan ikan Cakalang di perairan Indonesia Timur mengikuti pola pergerakan zona konvergensi tersebut. Peningkatan jumlah produksi ikan Cakalang di Kota Sorong meningkat seiring dengan keberadaan zona konvergensi di bagian Barat (La-Nina), namun di Propinsi Papua menunjukan pola sebaliknya.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mickie R. Edwards ◽  
Susana Cárdenas-Alayza ◽  
Michael J. Adkesson ◽  
Mya Daniels-Abdulahad ◽  
Amy C. Hirons

Peru’s coastal waters are characterized by significant environmental fluctuation due to periodic El Niño- La Niña- Southern Oscillation (ENSO) events. This variability results in ecosystem-wide food web changes which are reflected in the tissues of the Peruvian fur seal (Arctocephalus australis). Stable isotope ratios (δ13C and δ15N) in Peruvian fur seal vibrissae (whiskers) are used to infer temporal primary production and dietary variations in individuals. Sea surface temperature anomaly (SSTA) recordings from the Niño 1+2 Index region captured corresponding ENSO conditions. Fluctuations in δ15N values were correlated to SSTA records, indicating that ENSO conditions likely impact the diet of these apex predators over time. Anomalous warm phase temperatures corresponded to decreased δ15N values, whereas cold phase anomalous conditions corresponded to increased δ15N values, potentially from upwelled, nutrient-rich water. Vibrissae δ13C values revealed general stability from 2004 to 2012, a moderate decline during 2013 (La Niña conditions) followed by a period of increased values concurrent with the 2014–2016 El Niño event. Both δ13C and δ15N values were inversely correlated to each other during the strongest El Niño Southern Oscillation event on record (2014–2016), possibly indicating a decline in production leading to an increase in food web complexity. Lower δ13C and δ15N values were exhibited in female compared to male fur seal vibrissae. Findings suggest ENSO conditions influence resource availability, possibly eliciting changes in pinniped foraging behavior as well as food web of the endangered Peruvian fur seal.


POSITRON ◽  
2014 ◽  
Vol 4 (2) ◽  
Author(s):  
Muhammad Elifant Yuggotomo ◽  
Andi Ihwan

El Niño Southern Oscillation (ENSO) merupakan fenomena cuaca yang terjadi di Samudra Pasifik, sedangkan Dipole Mode (DM) adalah fenomena cuaca yang terjadi di Samudra Hindia. Kedua fenomena tersebut berpengaruh terhadap curah hujan pada beberapa wilayah di Indonesia. Pada penelitian ini telah dianalisis pengaruh fenomena ENSO dan DM terhadap curah hujan di Kabupaten Ketapang Provinsi Kalimantan Barat periode tahun 1984 sampai dengan tahun 2012 menggunakan metode Fast Fourier Transform (FFT) dan wavelet. Hasil analisis menunjukkan bahwa pengaruh pola ENSO dan DM rendah terhadap curah hujan di Kabupaten Ketapang ditunjukkan dengan nilai korelasi sebesar -0,18 dan -0,12. Pada saat terjadi El Niño curah hujan di Kabupaten Ketapang cenderung rendah. Namun saat terjadi DM Positif curah hujan di Kabupaten Ketapang cenderung tidak rendah. Sedangkan saat terjadi La Nina dan atau DM Negatif curah hujan di Kabupaten Ketapang cenderung tinggi.


Author(s):  
Byung-Chul Chun ◽  
Kwan Hong ◽  
Hari Hwang ◽  
Sangho Sohn

ObjectiveThis study aimed to explore the effects of El Niño and La Niña events on the timing of influenza A peak activity in European countries.IntroductionInfluenza causes a significant burden to the world every year. In the temperate zone, influenza usually prevalent in the winter season, however, it is hardly predictable when the influenza epidemic will begin and when the peak activity will come. Influenza has a peak in early winter sometimes and a peak in late winter in another year. However, it is not well known what determines these epidemics timing, and the global climate change is expected to influence the timing of influenza epidemics.MethodsThe weekly influenza surveillance data of 5 European countries (UK, Norway, Germany, Greece, and Italy) from January 2005 to July 2018 were retrieved from WHO FluNET database. UK and Norway are considered the northern part of Europe, otherwise Germany, Greece, and Italy are considered western southern part. The El Niño southern oscillation (ENSO) were retrieved from Korean Meteorological Administration. We used the definition of El Niño as the positive sea surface temperature anomalies (≥0.5 degree in Celcius), while La Niña events are negative anomalies (≤-0.5 degree) of 3 months moving average. The weeks with the highest activities of influenza A and B in each season were identified and coded as 1, 2, 3 if the peak appeared the 1st 2nd and 3rd week from the beginning of the year respectively. The influenza data of 2008/2009 and 2009/2010 were excluded from the analysis to eliminate the bias due to a pandemic influenza outbreak. We compared the means of these peak weeks according to the presence of the anomalies using the general linear model with Scheffe multiple comparison and Wilcoxon signed rank sum test.ResultsFrom January 2005 to July 2018, there were 3 El Niño and 5 La Niña events by the ENSO excluding 2009 El Niño. The influenza A peak activity was observed at 9th week (mean±SD, 8.7±4.8) from the beginning of the year in no anomaly event, but the peak appearance timing was significantly shortened to 6th week (6.2±2.7) and 5th week (5.1±3.9) when El Niño and La Niña events occurred, respectively (both p<0.05). Influenza A made the peak at usually 10th week (9.9±5.0) in northern 2 countries in no anomalies, but at 6th (6.4±3.9) week in any events of an anomaly in the surface sea temperature (p=0.072). In the southern 3 countries, influenza peaks were observed at 8th (7.9±4.8 ) week in usual without anomalies, but at 5th (5.0±3.3) week in El Niño or La Niña events (p=0.049).ConclusionsBoth El Niño and La Niña affect the timing of influenza A peak activity; the ENSO associated the early emergency of peak influenza activities in European countries.ReferencesFisman DN, et al. Impact of El Niño Southern Oscillation on infectious disease hospitalization risk in the United States. Proc Natl Acad Sci U S A. 2016; 113(51):14589-14594.Oluwole OSA. Seasonal Influenza Epidemics and El Niños. Front. Public Health 3:250.Zaraket H, et al. Association of early annual peak influenza activity with El Niño southern oscillation in Japan. Influenza andOther Respiratory Viruses 2008; 2(4): 127–130.


Sign in / Sign up

Export Citation Format

Share Document