scholarly journals Turbulence-Induced Anti-Stokes Flow and the Resulting Limitations of Large-Eddy Simulation

2018 ◽  
Vol 48 (1) ◽  
pp. 117-122 ◽  
Author(s):  
Brodie Pearson

AbstractThis study shows that the presence of Stokes drift us in the turbulent upper ocean induces a near-surface Eulerian current that opposes the Stokes drift. This current is distinct from previously studied anti-Stokes currents because it does not rely on the presence of planetary rotation or mean lateral gradients. Instead, the anti-Stokes flow arises from an interaction between the Stokes drift and turbulence. The new anti-Stokes flow is antiparallel to us near the ocean surface, is parallel to us at depth, and integrates to zero over the depth of the boundary layer. The presence of Stokes drift in large-eddy simulations (LES) is shown to induce artificial energy production caused by a combination of the new anti-Stokes flow and LES numerics. As a result, care must be taken when designing and interpreting simulations of realistic wave forcing, particularly as rotation becomes weak and/or us becomes perpendicular to the surface wind stress. The mechanism of the artificial energy production is demonstrated for a generalized LES subgrid scheme.

2019 ◽  
Vol 43 (6) ◽  
pp. 625-638 ◽  
Author(s):  
Jordan Nielson ◽  
Kiran Bhaganagar

A novel and a robust high-fidelity numerical methodology has been developed to realistically estimate the net energy production of full-scale horizontal axis wind turbines in a convective atmospheric boundary layer, for both isolated and multiple wind turbine arrays by accounting for the wake effects between them. Large eddy simulation has been used to understand the role of atmospheric stability in net energy production (annual energy production) of full-scale horizontal axis wind turbines placed in the convective atmospheric boundary layer. The simulations are performed during the convective conditions corresponding to the National Renewable Energy Laboratory field campaign of July 2015. A mathematical framework was developed to incorporate the field-based measurements as boundary conditions for the large eddy simulation by averaging the surface flux over multiple diurnal cycles. The objective of the study is to quantify the role of surface flux in the calculation of energy production for an isolated, two and three wind turbine configuration. The study compares the mean value, +1 standard deviation, and −1 standard deviation from the measured surface flux to demonstrate the role of surface heat flux. The uniqueness of the study is that power deficits from large eddy simulation were used to determine wake losses and obtain a net energy production that accounts for the wake losses. The frequency of stability events, from field measurements, is input into the calculation of an ensemble energy production prediction with wake losses for different wind turbine arrays. The increased surface heat flux increases the atmospheric turbulence into the wind turbines. Higher turbulence results in faster wake recovery by a factor of two. The faster wake recovery rates result in lowering the power deficits from 46% to 28% for the two-turbine array. The difference in net energy production between the +1 and −1 standard deviation (with respect to surface heat flux) simulations was 10% for the two-turbine array and 8% for the three-turbine array. An ensemble net energy production by accounting for the wake losses indicated the overestimation of annual energy production from current practices could be corrected by accounting for variation of surface flux from the mean value.


2008 ◽  
Vol 38 (11) ◽  
pp. 2587-2596 ◽  
Author(s):  
George L. Mellor

Abstract This is a revision of a previous paper dealing with three-dimensional wave-current interactions. It is shown that the continuity and momentum equations in the absence of surface waves can include waves after the addition of three-dimensional radiation stress terms, a fairly simple alteration for numerical ocean circulation models. The velocity that varies on time and space scales, which are large compared to inverse wave frequency and wavenumber, is denoted by ûα and, by convention, is called the “current.” The Stokes drift is labeled uSα and the mean velocity is Uα ≡ ûα + uSα. When vertically integrated, the results here are in agreement with past literature. Surface wind stress is empirical, but transfer of the stress into the water column is a function derived in this paper. The wave energy equation is derived, and terms such as the advective wave velocity are weighted vertical integrals of the mean velocity. The wave action equation is not an appropriate substitute for the wave energy equation when the mean velocity is depth dependent.


2015 ◽  
Vol 45 (12) ◽  
pp. 3033-3056 ◽  
Author(s):  
Sean Haney ◽  
Baylor Fox-Kemper ◽  
Keith Julien ◽  
Adrean Webb

AbstractHere, the effects of surface waves on submesoscale instabilities are studied through analytical and linear analyses as well as nonlinear large-eddy simulations of the wave-averaged Boussinesq equations. The wave averaging yields a surface-intensified current (Stokes drift) that advects momentum, adds to the total Coriolis force, and induces a Stokes shear force. The Stokes–Coriolis force alters the geostrophically balanced flow by reducing the burden on the Eulerian–Coriolis force to prop up the front, thereby potentially inciting an anti-Stokes Eulerian shear, while maintaining the Lagrangian (Eulerian plus Stokes) shear. Since the Lagrangian shear is maintained, the Charney–Stern–Pedlosky criteria for quasigeostrophic (QG) baroclinic instability are unchanged with the appropriate Lagrangian interpretation of the shear and QG potential vorticity. While the Stokes drift does not directly affect vorticity, the anti-Stokes Eulerian shear contributes to the Ertel potential vorticity (PV). When the Stokes shear and geostrophic shear are aligned (antialigned), the PV is more (less) cyclonic. If the Stokes-modified PV is anticyclonic, the flow is unstable to symmetric instabilities (SI). Stokes drift also weakly impacts SI through the Stokes shear force. When the Stokes and Eulerian shears are the same (opposite) sign, the Stokes shear force does positive (negative) work on the flow associated with SI. Stokes drift also allows SI to extract more potential energy from the front, providing an indirect mechanism for Stokes-induced restratification.


2018 ◽  
Vol 843 ◽  
pp. 479-517 ◽  
Author(s):  
James C. McWilliams

A diagnostic analysis is made for the ageostrophic secondary circulation, buoyancy flux and frontogenetic tendency (SCFT) in upper-ocean submesoscale fronts and dense filaments under the combined influences of boundary-layer turbulent mixing, surface wind stress and surface gravity waves. The analysis is based on a momentum-balance approximation that neglects ageostrophic acceleration, and the surface wave effects are represented with a wave-averaged asymptotic theory based on the time scale separation between wave and current evolution. The wave’s Stokes-drift velocity $\boldsymbol{u}_{st}$ induces SCFT effects that are dominant in strong swell with weak turbulent mixing, and they combine with Ekman and turbulent thermal wind influences in more general situations near wind–wave equilibrium. The complementary effect of the submesoscale currents on the waves is weak for longer waves near the wind–wave or swell spectrum peak, but it is strong for shorter waves.


2016 ◽  
Vol 1 (2) ◽  
pp. 311-325 ◽  
Author(s):  
Vahid S. Bokharaie ◽  
Pieter Bauweraerts ◽  
Johan Meyers

Abstract. Given a wind farm with known dimensions and number of wind turbines, we try to find the optimum positioning of wind turbines that maximises wind-farm energy production. In practice, given that optimisation has to be performed for many wind directions, and taking into account the yearly wind distribution, such an optimisation is computationally only feasible using fast engineering wake models such as the Jensen model. These models are known to have accuracy issues, in particular since their representation of wake interaction is very simple. In the present work, we propose an optimisation approach that is based on a hybrid combination of large-eddy simulation (LES) and the Jensen model; in this approach, optimisation is mainly performed using the Jensen model, and LES is used at a few points only during optimisation for online tuning of the wake-expansion coefficient in the Jensen model, as well as for validation of the results. An optimisation case study is considered, in which the placement of 30 turbines in a 4 km by 3 km rectangular domain is optimised in a neutral atmospheric boundary layer. Optimisation for both a single wind direction and multiple wind directions is discussed.


2014 ◽  
Vol 71 (11) ◽  
pp. 4001-4027 ◽  
Author(s):  
Peter P. Sullivan ◽  
James C. McWilliams ◽  
Edward G. Patton

Abstract Momentum and scalar transport in the marine atmospheric boundary layer (MABL) is driven by a turbulent mix of winds, buoyancy, and surface gravity waves. To investigate the interaction between these processes, a large-eddy simulation (LES) model is developed with the capability to impose a broadband spectrum of time-varying finite-amplitude surface waves at its lower boundary. The LES model adopts a Boussinesq flow model and integrates the governing equations on a time-varying, surface-fitted, nonorthogonal mesh using cell-centered variables with special attention paid to the solution of the pressure Poisson equation near the wavy boundary. Weakly unstable MABLs are simulated with geostrophic winds increasing from 5 to 25 m s−1 and wave age varying from swell-dominated to wind-wave equilibrium. The simulations illustrate cross-scale coupling as wave-impacted near-surface turbulence transitions into shear-convective rolls with increasing distance from the water. In a regime with swell, low winds, and weak heating, wave-induced vertical velocity and pressure signals are readily observed well above the standard reference height ζa = 10 m. At wind-wave equilibrium, the small-scale wave-induced signals are detectable only near the water surface. Below ζa, a nearly-constant-flux layer is observed where the momentum flux carried by turbulence, form stress, and subgrid-scale motions shifts with varying wave age and distance above the water. The spectral content of the surface form stress is wave-age dependent, especially at low wavenumbers. The LES wind profiles deviate from Monin–Obukhov similarity theory in nonequilibrium wind-wave conditions, and entrainment is greatly enhanced by shear-induced engulfment events.


2020 ◽  
Author(s):  
Zheye Wang ◽  
Shuang Li

<p>Artificial fish reefs are the underwater structures placed on the ocean floor to simulate some characteristics of natural reefs. The onshore current can be transformed into upwelling under the influence of artificial fish reefs, thus the nutrient at the bottom of the near shore can be raised, which increases the prey of plankton and fish yield. In order to investigate this phenomenon, a 3D large eddy simulation (LES) of the ocean boundary layer was combined with four different types of artificial fish reef terrains (square, convex-fan, isosceles right triangle, concave-fan). In the near surface, almost only the square terrain can uplift the nutrient, which brings about the most uniform nutrient distribution. Based on the size of integral values of nutrient concentration in the upper part of the four reefs, they are listed as follows: square terrain, convex-fan terrain, isosceles right triangle terrain, concave-fan terrain decreases (from largest to smallest). What is more, the integral values of the four terrains reduce exponentially. Because the nutrient flow encounters the square terrain’s vertical plane, it has a larger vertical velocity. Nevertheless, for convex-fan terrain and isosceles right triangle terrain, their slopes are smoothly, resulting in poor lifting effect. Meanwhile, compared with the other three types of terrains, the concave-fan terrain can prevent the overflow of nutrients better. Among those four reefs, it can be found the square-shaped artificial fish reef is the best one for uplifting the nutrient.</p>


Sign in / Sign up

Export Citation Format

Share Document