scholarly journals Observed Eddy–Internal Wave Interactions in the Southern Ocean

2020 ◽  
Vol 50 (10) ◽  
pp. 3043-3062
Author(s):  
Jesse M. Cusack ◽  
J. Alexander Brearley ◽  
Alberto C. Naveira Garabato ◽  
David A. Smeed ◽  
Kurt L. Polzin ◽  
...  

AbstractThe physical mechanisms that remove energy from the Southern Ocean’s vigorous mesoscale eddy field are not well understood. One proposed mechanism is direct energy transfer to the internal wave field in the ocean interior, via eddy-induced straining and shearing of preexisting internal waves. The magnitude, vertical structure, and temporal variability of the rate of energy transfer between eddies and internal waves is quantified from a 14-month deployment of a mooring cluster in the Scotia Sea. Velocity and buoyancy observations are decomposed into wave and eddy components, and the energy transfer is estimated using the Reynolds-averaged energy equation. We find that eddies gain energy from the internal wave field at a rate of −2.2 ± 0.6 mW m−2, integrated from the bottom to 566 m below the surface. This result can be decomposed into a positive (eddy to wave) component, equal to 0.2 ± 0.1 mW m−2, driven by horizontal straining of internal waves, and a negative (wave to eddy) component, equal to −2.5 ± 0.6 mW m−2, driven by vertical shearing of the wave spectrum. Temporal variability of the transfer rate is much greater than the mean value. Close to topography, large energy transfers are associated with low-frequency buoyancy fluxes, the underpinning physics of which do not conform to linear wave dynamics and are thereby in need of further research. Our work suggests that eddy–internal wave interactions may play a significant role in the energy balance of the Southern Ocean mesoscale eddy and internal wave fields.

2015 ◽  
Vol 46 (2) ◽  
pp. 417-437 ◽  
Author(s):  
Amelie Meyer ◽  
Kurt L. Polzin ◽  
Bernadette M. Sloyan ◽  
Helen E. Phillips

AbstractIn the stratified ocean, turbulent mixing is primarily attributed to the breaking of internal waves. As such, internal waves provide a link between large-scale forcing and small-scale mixing. The internal wave field north of the Kerguelen Plateau is characterized using 914 high-resolution hydrographic profiles from novel Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats. Altogether, 46 coherent features are identified in the EM-APEX velocity profiles and interpreted in terms of internal wave kinematics. The large number of internal waves analyzed provides a quantitative framework for characterizing spatial variations in the internal wave field and for resolving generation versus propagation dynamics. Internal waves observed near the Kerguelen Plateau have a mean vertical wavelength of 200 m, a mean horizontal wavelength of 15 km, a mean period of 16 h, and a mean horizontal group velocity of 3 cm s−1. The internal wave characteristics are dependent on regional dynamics, suggesting that different generation mechanisms of internal waves dominate in different dynamical zones. The wave fields in the Subantarctic/Subtropical Front and the Polar Front Zone are influenced by the local small-scale topography and flow strength. The eddy-wave field is influenced by the large-scale flow structure, while the internal wave field in the Subantarctic Zone is controlled by atmospheric forcing. More importantly, the local generation of internal waves not only drives large-scale dissipation in the frontal region but also downstream from the plateau. Some internal waves in the frontal region are advected away from the plateau, contributing to mixing and stratification budgets elsewhere.


2005 ◽  
Vol 35 (11) ◽  
pp. 2104-2109 ◽  
Author(s):  
Naoki Furuichi ◽  
Toshiyuki Hibiya ◽  
Yoshihiro Niwa

Abstract Bispectral analysis of the numerically reproduced spectral responses of the two-dimensional oceanic internal wave field to the incidence of the low-mode semidiurnal internal tide is performed. At latitudes just equatorward of 30°, the low-mode semidiurnal internal tide dominantly interacts with two high-vertical-wavenumber diurnal (near inertial) internal waves, forming resonant triads of parametric subharmonic instability (PSI) type. As the high-vertical-wavenumber near-inertial energy level is raised by this interaction, the energy cascade to small horizontal and vertical scales is enhanced. Bispectral analysis thus indicates that energy in the low-mode semidiurnal internal tide is not directly transferred to small scales but via the development of high-vertical-wavenumber near-inertial current shear. In contrast, no noticeable energy cascade to high vertical wavenumbers is recognized in the bispectra poleward of ∼30° as well as equatorward of ∼25°. A new finding is that, although PSI is possible equatorward of ∼30°, the efficiency drops sharply as the latitude falls below ∼25°. At all latitudes, another resonant interaction suggestive of induced diffusion is found to occur between the low-mode semidiurnal internal tide and two high-frequency internal waves, although bispectral analysis shows that this interaction plays only a minor role in cascading the low-mode semidiurnal internal tide energy.


2017 ◽  
Vol 47 (1) ◽  
pp. 199-210 ◽  
Author(s):  
Takashi Ijichi ◽  
Toshiyuki Hibiya

AbstractIn the proximity of mixing hotspots in the deep ocean, the observed internal wave spectra are usually distorted from the Garrett–Munk (GM) spectrum and are characterized by the high energy level E as well as a shear–strain ratio Rω quite different from that of the GM spectrum. On the basis of the eikonal theoretical model, Ijichi and Hibiya (IH) recently proposed the revised finescale parameterization of turbulent dissipation rates in the distorted internal wave field, although the vertical velocity associated with background internal waves and the strict WKB scale separation, for example, were not taken into account. To see the effects of such simplifying assumptions on the revised parameterization, this study carries out a series of eikonal calculations for energy transfer through various internal wave spectra distorted from the GM. Although the background vertical velocity and the strict WKB scale separation somewhat affect the calculated energy transfer rates, their parameter dependence is confirmed as expected; the calculated energy transfer rates ε follow the basic scaling ε ∝ E2N2f with the local buoyancy frequency N and the local inertial frequency f and exhibit strong Rω dependence quite similar to that predicted by IH.


2013 ◽  
Vol 721 ◽  
pp. 1-27 ◽  
Author(s):  
M.-P. Lelong ◽  
E. Kunze

AbstractThe interaction of barotropic tidal currents and baroclinic geostrophic eddies is considered theoretically and numerically to determine whether energy can be transferred to an internal wave field by this process. The eddy field evolves independently of the tide, suggesting that it acts catalytically in facilitating energy transfer from the barotropic tide to the internal wave field, without exchanging energy with the other flow components. The interaction is identically zero and no waves are generated when the barotropic tidal current is horizontally uniform. Optimal internal wave generation occurs when the scales of tide and eddy fields satisfy resonant conditions. The most efficient generation is found if the tidal current horizontal scale is comparable to that of the eddies, with a weak maximum when the scales differ by a factor of two. Thus, this process is not an effective mechanism for internal wave excitation in the deep ocean, where tidal current scales are much larger than those of eddies, but it may provide an additional source of internal waves in coastal areas where horizontal modulation of the tide by topography can be significant.


1976 ◽  
Vol 77 (1) ◽  
pp. 185-208 ◽  
Author(s):  
Kenneth M. Watson ◽  
Bruce J. West ◽  
Bruce I. Cohen

A surface-wave/internal-wave mode coupled model is constructed to describe the energy transfer from a linear surface wave field on the ocean to a linear internal wave field. Expressed in terms of action-angle variables the dynamic equations have a particularly useful form and are solved both numerically and in some analytic approximations. The growth time for internal waves generated by the resonant interaction of surface waves is calculated for an equilibrium spectrum of surface waves and for both the Garrett-Munk and two-layer models of the undersea environment. We find energy transfer rates as a function of undersea parameters which are much faster than those based on the constant Brunt-ViiisSila model used by Kenyon (1968) and which are consistent with the experiments of Joyce (1974). The modulation of the surface-wave spectrum by internal waves is also calculated, yielding a ‘mottled’ appearance of the ocean surface similar to that observed in photographs taken from an ERTS1 satellite (Ape1 et al. 1975b).


2016 ◽  
Vol 46 (8) ◽  
pp. 2335-2350 ◽  
Author(s):  
Dirk Olbers ◽  
Carsten Eden

AbstractTwo surface waves can interact to produce an internal gravity wave by nonlinear resonant coupling. The process has been called spontaneous creation (SC) because it operates without internal waves being initially present. Previous studies have shown that the generated internal waves have high frequency close to the local Brunt–Väisälä frequency and wavelengths that are much larger than those of the participating surface waves, and that the spectral transfer rate of energy to the internal wave field is small compared to other generation processes. The aim of the present analysis is to provide a global map of the energy transfer into the internal wave field by surface–internal wave interaction, which is found to be about 10−3 TW in total, based on a realistic wind-sea spectrum (depending on wind speed), mixed layer depths, and stratification below the mixed layer taken from a state-of-the-art numerical ocean model. Unlike previous calculations of the spectral transfer rate based on a vertical mode decomposition, the authors use an analytical framework that directly derives the energy flux of generated internal waves radiating downward from the mixed layer base. Since the radiated waves are of high frequency, they are trapped and dissipated in the upper ocean. The radiative flux thus feeds only a small portion of the water column, unlike in cases of wind-driven near-inertial waves that spread over the entire ocean depth before dissipating. The authors also give an estimate of the interior dissipation and implied vertical diffusivities due to this process. In an extended appendix, they review the modal description of the SC interaction process, completed by the corresponding counterpart, the modulation interaction process (MI), where a preexisting internal wave is modulated by a surface wave and interacts with another one. MI establishes a damping of the internal wave field, thus acting against SC. The authors show that SC overcomes MI for wind speeds exceeding about 10 m s−1.


2010 ◽  
Vol 46 (3) ◽  
pp. 347-359 ◽  
Author(s):  
V. G. Bondur ◽  
Yu. V. Grebenyuk ◽  
E. V. Ezhova ◽  
V. I. Kazakov ◽  
D. A. Sergeev ◽  
...  

2016 ◽  
Vol 46 (2) ◽  
pp. 395-415 ◽  
Author(s):  
Hayley V. Dosser ◽  
Luc Rainville

ABSTRACTThe dynamics of the wind-generated near-inertial internal wave field in the Canada Basin of the Arctic Ocean are investigated using the drifting Ice-Tethered Profiler dataset for the years 2005 to 2014, during a decade when sea ice extent and thickness decreased dramatically. This time series, with nearly 10 years of measurements and broad spatial coverage, is used to quantify a seasonal cycle and interannual trend for internal waves in the Arctic, using estimates of the amplitude of near-inertial waves derived from isopycnal displacements. The internal wave field is found to be most energetic in summer when sea ice is at a minimum, with a second maximum in early winter during the period of maximum wind speed. Amplitude distributions for the near-inertial waves are quantifiably different during summer and winter, due primarily to seasonal changes in sea ice properties that affect how the ice responds to the wind, which can be expressed through the “wind factor”—the ratio of sea ice drift speed to wind speed. A small positive interannual trend in near-inertial wave energy is linked to pronounced sea ice decline during the last decade. Overall variability in the internal wave field increases significantly over the second half of the record, with an increased probability of larger-than-average waves in both summer and winter. This change is linked to an overall increase in variability in the wind factor and sea ice drift speeds, and reflects a shift in year-round sea ice characteristics in the Arctic, with potential implications for dissipation and mixing associated with internal waves.


1995 ◽  
Vol 2 (2) ◽  
pp. 80-88 ◽  
Author(s):  
E. Pelinovksy ◽  
T. Talipova ◽  
V. Ivanov

Abstract. The measurements of the vertical structure of hydrological fields and internal waves on the Levantine Sea's polygon in the Mediterranean, obtained in the 27-th cruise of the RV "Professor Kolesnikov" in 1991, have been used to estimate the kinematic and nonlinear characteristics of the internal wave field. Statistical and spatial distributions of the vertical profiles of the Brunt-Vaisala frequency are described. They have been used to calculate the coefficients of the Korteweg - de Vries equation. This equation forms the main model for nonlinear parameters. It is shown that the variations of the long wave speed propagation and the dispersion parameter are relatively small in comparison with the variation of the nonlinear parameter. Estimations of the nonlinear properties of the internal waves, being measured, based on the calculation of the local Ursell parameter are given. This method can be used for investigation of the internal wave transformation processes in oceanic regions with horizontal variability of the hydrophysical fields (temperature, salinity) and sloped sea floor.


Sign in / Sign up

Export Citation Format

Share Document