scholarly journals Small-Scale Variability in Sea Surface Salinity and Implications for Satellite-Derived Measurements

2013 ◽  
Vol 30 (11) ◽  
pp. 2689-2694 ◽  
Author(s):  
Nadya T. Vinogradova ◽  
Rui M. Ponte

Abstract Calibration and validation efforts of the Aquarius and Soil Moisture and Ocean Salinity (SMOS) satellite missions involve comparisons of satellite and in situ measurements of sea surface salinity (SSS). Such estimates of SSS can differ by the presence of small-scale variability, which can affect the in situ point measurement, but be averaged out in the satellite retrievals because of their large footprint. This study quantifies how much of a difference is expected between in situ and satellite SSS measurements on the basis of their different sampling of spatial variability. Maps of sampling error resulting from small-scale noise, defined here as the root-mean-square difference between “local” and footprint-averaged SSS estimates, are derived using a solution from a global high-resolution ocean data assimilation system. The errors are mostly <0.1 psu (global median is 0.05 psu), but they can be >0.2 psu in several regions, particularly near strong currents and outflows of major rivers. To examine small-scale noise in the context of other errors, its values are compared with the overall expected differences between monthly Aquarius SSS and Argo-based estimates. Results indicate that in several ocean regions, small-scale variability can be an important source of sampling error for the in situ measurements.

2020 ◽  
Author(s):  
Sisi Qin

<p>In this study, Sea Surface Salinity (SSS) Level 3 (L3) daily product derived from Soil Moisture Active Passive (SMAP) during the year 2016, was validated and compared with SSS daily products derived from Soil Moisture and Ocean Salinity (SMOS) and in-situ measurements. Generally, the Root Mean Square Error (RMSE) of the daily SSS products is larger along the coastal areas and at high latitudes and is smaller in the tropical regions and open oceans. Comparisons between the two types of daily satellite SSS product revealed that the RMSE was higher in the daily SMOS product than in the SMAP, whereas the bias of the daily SMOS was observed to be less than that of the SMAP when compared with Argo floats data. In addition, the latitude-dependent bias and RMSE of the SMAP SSS were found to be primarily influenced by the precipitation and the Sea Surface Temperature (SST).Then, aregression analysis method which has adopted the precipitation and SST data was used to correct the larger bias of the daily SMAP product. It was confirmed that the corrected daily SMAP product could be used for assimilation in high-resolution forecast models, due to the fact that it was demonstrated to be unbiased and much closer to the in-situ measurements than the original uncorrected SMAP product.</p>


2021 ◽  
Vol 13 (4) ◽  
pp. 811
Author(s):  
Hao Liu ◽  
Zexun Wei

The variability in sea surface salinity (SSS) on different time scales plays an important role in associated oceanic or climate processes. In this study, we compare the SSS on sub-annual, annual, and interannual time scales among ten datasets, including in situ-based and satellite-based SSS products over 2011–2018. Furthermore, the dominant mode on different time scales is compared using the empirical orthogonal function (EOF). Our results show that the largest spread of ten products occurs on the sub-annual time scale. High correlation coefficients (0.6~0.95) are found in the global mean annual and interannual SSSs between individual products and the ensemble mean. Furthermore, this study shows good agreement among the ten datasets in representing the dominant mode of SSS on the annual and interannual time scales. This analysis provides information on the consistency and discrepancy of datasets to guide future use, such as improvements to ocean data assimilation and the quality of satellite-based data.


2014 ◽  
Vol 119 (9) ◽  
pp. 6171-6189 ◽  
Author(s):  
Wenqing Tang ◽  
Simon H. Yueh ◽  
Alexander G. Fore ◽  
Akiko Hayashi

2021 ◽  
Author(s):  
Clovis Thouvenin-Masson ◽  
Jacqueline Boutin ◽  
Jean-Luc Vergely ◽  
Dimitry Khvorostyanov ◽  
Xavier Perrot ◽  
...  

<p>Sea Surface Salinity (SSS) are retrieved from SMOS and SMAP L-band radiometers at a spatial resolution of about 50km.</p><p> </p><p>Traditionally, satellite SSS products validation is based on comparisons with in-situ near surface salinity measurements.</p><p> </p><p>In-situ measurements are performed on moorings, argo floats and along ship tracks[JB1] , which provide punctual or one-dimensional (along ship tracks) estimations of the SSS.</p><p> </p><p>The sampling difference between one-dimensional or punctual in-situ measurements and two-dimensional satellite products results in a sampling error that must be separated from measurement errors for the validation of satellite products.</p><p> </p><p>We use a small-scale resolution field (1/12° Mercator Global Ocean Physics Analysis and Forecast) to estimate the expected sampling error of each kind of in-situ measurements, by comparing punctual, [JB2] one-dimensional and two-dimensional SSS variability.</p><p> </p><p>The better understanding of sampling errors allows a more accurate validation of satellite SSS and of the errors estimated by satellite retrieval algorithms. The improvement is quantified by considering the standard deviation of satellite minus in-situ salinities differences normalized by the sampling and retrieval errors. This quantity should be equal to one if all the error contributions are correctly considered. This methodology will be applied to SMOS SSS and to merged SMOS and SMAP SSS products.</p>


2021 ◽  
Author(s):  
Roberto Sabia ◽  
Sebastien Guimbard ◽  
Nicolas Reul ◽  
Tony Lee ◽  
Julian Schanze ◽  
...  

<p>The Pilot Mission Exploitation Platform (Pi-MEP) for Salinity (www.salinity-pimep.org) has been released operationally in 2019 to the broad oceanographic community, in order to foster satellite sea surface salinity validation and exploitation activities.</p><p>Specifically, the Platform aims at enhancing salinityvalidation, by allowing systematic inter-comparison of various EO datasets with a broad suite of in-situ data, and also at enabling oceanographic process studies by capitalizing on salinity data in synergy with additional spaceborne estimates.</p><p> </p><p>Despite Pi-MEP was originally conceived as an ESA initiative to widen the uptake of the Soil Moisture and Ocean Salinity (SMOS) mission data over ocean, a project partnership with NASA was devised soon after the operational deployment, and an official collaboration endorsed within the ESA-NASA Joint Program Planning Group (JPPG).</p><p> </p><p>The Salinity Pi-MEP has therefore become a reference hub for SMOS, SMAP and Aquarius satellite salinity missions, which are assessed in synergy with additional thematic datasets (e.g., precipitation, evaporation, currents, sea level anomalies, ocean color, sea surface temperature). </p><p>Match-up databases of satellite/in situ (such as Argo, TSG, moorings, drifters) data and corresponding validation reports at different spatiotemporal scales are systematically generated; furthermore, recently-developed dedicated tools allow data visualization, metrics computation and user-driven features extractions.</p><p> </p><p>The Platform is also meant to monitor salinity in selected oceanographic “case studies”, ranging from river plumes monitoring to SSS characterization in challenging regions, such as high latitudes or semi-enclosed basins.</p><p> </p><p>The two Agencies are currently collaborating to widen the Platform features on several technical aspects - ranging from a triple-collocation software implementation to a sustained exploitation of data from the SPURS-1/2 campaigns. In this context, an upgrade of the satellite/in-situ match-up methodology has been recently agreed, resulting into a redefinition of the validation criteria that will be subsequently implemented in the Platform.</p><p> </p><p>A further synthesis of the three satellites salinity algorithms, models and auxiliary data handling is at the core of the ESA Climate Change Initiative (CCI) on Salinity and of ESA-NASA further collaboration.</p>


2012 ◽  
Vol 9 (5) ◽  
pp. 3331-3357 ◽  
Author(s):  
J. Boutin ◽  
N. Martin ◽  
G. Reverdin ◽  
X. Yin ◽  
F. Gaillard

Abstract. The sea surface salinity (SSS) measured from space by the Soil Moisture and Ocean Salinity (SMOS) mission has recently been revisited by the European Space Agency first campaign reprocessing. We show that, with respect to the previous version, biases close to land and ice greatly decrease. The accuracy of SMOS SSS averaged over 10 days 100 × 100 km2 in the open ocean and estimated by comparison to ARGO SSS is on the order of 0.3–0.4 in tropical and subtropical regions and 0.5 in a cold region. The mean SSS −0.1 bias observed in the Tropical Pacific Ocean between 5° N and 15° N, relatively to other regions, is suppressed when SMOS rainy events, as detected on SSMIs rain rates, are removed from the SMOS-ARGO comparisons. The SMOS freshening is linearly correlated to SSMIs rain rate with a slope estimated to −0.14 mm−1 h, after correction for rain atmospheric contribution. This tendency is the signature of the temporal SSS variability between the time of SMOS and ARGO measurements linked to rain variability and of the vertical salinity stratification between the first centimeter of the sea surface layer sampled by SMOS and the 5 m depth sampled by ARGO. However, given that the whole set of collocations includes situations with rainy ARGO measurements collocated with non rainy SMOS measurements, the mean −0.1 bias and the negative skewness of the statistical distribution of SMOS minus ARGO SSS difference are very likely the mean signature of the vertical salinity stratification. In the future, the analysis of ongoing in situ salinity measurements in the top 50 cm of the sea surface and of Aquarius satellite SSS are expected to provide complementary information about the sea surface salinity stratification.


2019 ◽  
Vol 11 (24) ◽  
pp. 3043 ◽  
Author(s):  
Séverine Fournier ◽  
Tong Lee ◽  
Wenqing Tang ◽  
Michael Steele ◽  
Estrella Olmedo

Salinity is a critical parameter in the Arctic Ocean, having potential implications for climate and weather. This study presents the first systematic analysis of 6 commonly used sea surface salinity (SSS) products from the National Aeronautics and Space Administration (NASA) Aquarius and Soil Moisture Active Passive (SMAP) satellites and the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, in terms of their consistency among one another and with in-situ data. Overall, the satellite SSS products provide a similar characterization of the time mean SSS large-scale patterns and are relatively consistent in depicting the regions with strong SSS temporal variability. When averaged over the Arctic Ocean, the SSS show an excellent consistency in describing the seasonal and interannual variations. Comparison of satellite SSS with in-situ salinity measurements along ship transects suggest that satellite SSS captures salinity gradients away from regions with significant sea-ice concentration. The root-mean square differences (RMSD) of satellite SSS with respect to in-situ measurements improves with increasing temperature, reflecting the limitation of L-band radiometric sensitivity to SSS in cold water. However, the satellite SSS biases with respect to the in-situ measurements do not show a consistent dependence on temperature. The results have significant implications for the calibration and validation of satellite SSS as well as for the modeling community and the design of future satellite missions.


2019 ◽  
Author(s):  
Jiping Xie ◽  
Roshin P. Raj ◽  
Laurent Bertino ◽  
Annette Samuelsen ◽  
Tsuyoshi Wakamatsu

Abstract. Although the stratification of the upper Arctic Ocean is mostly salinity-driven, the sea surface salinity (SSS) is still poorly known in the Arctic, due to its strong variability and the sparseness of in-situ observations. Recently, two gridded SSS products have been derived from the European Space Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, independently developed by the Barcelona Expert Centre (BEC) in Spain and the Ocean Salinity Expertise Center (CECOS) of the Centre Aval de Traitemenent des Donnees SMOS (CATDS) in France, respectively. In parallel, there are two reanalysis products providing the Arctic SSS in the framework of the Copernicus Marine Environment Monitoring Services (CMEMS), one global, and another regional product. While the regional Arctic TOPAZ4 system assimilates a large set of sea-ice and ocean observations with an Ensemble Kalman Filter, the global reanalysis combines in-situ and satellite data using a multivariate ensemble optimal interpolation method. In this study, focused on the Arctic Ocean, these four salinity products, together with the climatology both World Ocean Atlas (WOA) of 2013 and Polar science center Hydrographic Climatology (PHC), are evaluated against in-situ datasets during 2011–2013. For the validation the in-situ observations are divided in two; those that have been assimilated and those that have not. The deviations of SSS between the different products and against the in-situ observations show largest disagreements below the sea-ice and in the marginal ice zone (MIZ), especially during the summer months. In the Beaufort Sea, the summer SSS from the BEC product has the smallest – saline – bias (~0.6 psu) with the smallest root mean squared difference (RSMD) of 2.6 psu. This suggests a potential value of assimilating of this product into the forthcoming Arctic reanalyses. Keywords: Arctic Ocean; sea surface salinity; SMOS; reanalysis; absolute deviation;


2007 ◽  
Vol 24 (2) ◽  
pp. 255-269 ◽  
Author(s):  
Sabine Philipps ◽  
Christine Boone ◽  
Estelle Obligis

Abstract Soil Moisture and Ocean Salinity (SMOS) was chosen as the European Space Agency’s second Earth Explorer Opportunity mission. One of the objectives is to retrieve sea surface salinity (SSS) from measured brightness temperatures (TBs) at L band with a precision of 0.2 practical salinity units (psu) with averages taken over 200 km by 200 km areas and 10 days [as suggested in the requirements of the Global Ocean Data Assimilation Experiment (GODAE)]. The retrieval is performed here by an inverse model and additional information of auxiliary SSS, sea surface temperature (SST), and wind speed (W). A sensitivity study is done to observe the influence of the TBs and auxiliary data on the SSS retrieval. The key role of TB and W accuracy on SSS retrieval is verified. Retrieval is then done over the Atlantic for two cases. In case A, auxiliary data are simulated from two model outputs by adding white noise. The more realistic case B uses independent databases for reference and auxiliary ocean parameters. For these cases, the RMS error of retrieved SSS on pixel scale is around 1 psu (1.2 for case B). Averaging over GODAE scales reduces the SSS error by a factor of 12 (4 for case B). The weaker error reduction in case B is most likely due to the correlation of errors in auxiliary data. This study shows that SSS retrieval will be very sensitive to errors on auxiliary data. Specific efforts should be devoted to improving the quality of auxiliary data.


Sign in / Sign up

Export Citation Format

Share Document