Validation and correction of sea surface salinity retrieval from SMAP

Author(s):  
Sisi Qin

<p>In this study, Sea Surface Salinity (SSS) Level 3 (L3) daily product derived from Soil Moisture Active Passive (SMAP) during the year 2016, was validated and compared with SSS daily products derived from Soil Moisture and Ocean Salinity (SMOS) and in-situ measurements. Generally, the Root Mean Square Error (RMSE) of the daily SSS products is larger along the coastal areas and at high latitudes and is smaller in the tropical regions and open oceans. Comparisons between the two types of daily satellite SSS product revealed that the RMSE was higher in the daily SMOS product than in the SMAP, whereas the bias of the daily SMOS was observed to be less than that of the SMAP when compared with Argo floats data. In addition, the latitude-dependent bias and RMSE of the SMAP SSS were found to be primarily influenced by the precipitation and the Sea Surface Temperature (SST).Then, aregression analysis method which has adopted the precipitation and SST data was used to correct the larger bias of the daily SMAP product. It was confirmed that the corrected daily SMAP product could be used for assimilation in high-resolution forecast models, due to the fact that it was demonstrated to be unbiased and much closer to the in-situ measurements than the original uncorrected SMAP product.</p>

2013 ◽  
Vol 30 (11) ◽  
pp. 2689-2694 ◽  
Author(s):  
Nadya T. Vinogradova ◽  
Rui M. Ponte

Abstract Calibration and validation efforts of the Aquarius and Soil Moisture and Ocean Salinity (SMOS) satellite missions involve comparisons of satellite and in situ measurements of sea surface salinity (SSS). Such estimates of SSS can differ by the presence of small-scale variability, which can affect the in situ point measurement, but be averaged out in the satellite retrievals because of their large footprint. This study quantifies how much of a difference is expected between in situ and satellite SSS measurements on the basis of their different sampling of spatial variability. Maps of sampling error resulting from small-scale noise, defined here as the root-mean-square difference between “local” and footprint-averaged SSS estimates, are derived using a solution from a global high-resolution ocean data assimilation system. The errors are mostly <0.1 psu (global median is 0.05 psu), but they can be >0.2 psu in several regions, particularly near strong currents and outflows of major rivers. To examine small-scale noise in the context of other errors, its values are compared with the overall expected differences between monthly Aquarius SSS and Argo-based estimates. Results indicate that in several ocean regions, small-scale variability can be an important source of sampling error for the in situ measurements.


2019 ◽  
Vol 11 (24) ◽  
pp. 3043 ◽  
Author(s):  
Séverine Fournier ◽  
Tong Lee ◽  
Wenqing Tang ◽  
Michael Steele ◽  
Estrella Olmedo

Salinity is a critical parameter in the Arctic Ocean, having potential implications for climate and weather. This study presents the first systematic analysis of 6 commonly used sea surface salinity (SSS) products from the National Aeronautics and Space Administration (NASA) Aquarius and Soil Moisture Active Passive (SMAP) satellites and the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, in terms of their consistency among one another and with in-situ data. Overall, the satellite SSS products provide a similar characterization of the time mean SSS large-scale patterns and are relatively consistent in depicting the regions with strong SSS temporal variability. When averaged over the Arctic Ocean, the SSS show an excellent consistency in describing the seasonal and interannual variations. Comparison of satellite SSS with in-situ salinity measurements along ship transects suggest that satellite SSS captures salinity gradients away from regions with significant sea-ice concentration. The root-mean square differences (RMSD) of satellite SSS with respect to in-situ measurements improves with increasing temperature, reflecting the limitation of L-band radiometric sensitivity to SSS in cold water. However, the satellite SSS biases with respect to the in-situ measurements do not show a consistent dependence on temperature. The results have significant implications for the calibration and validation of satellite SSS as well as for the modeling community and the design of future satellite missions.


2007 ◽  
Vol 24 (2) ◽  
pp. 255-269 ◽  
Author(s):  
Sabine Philipps ◽  
Christine Boone ◽  
Estelle Obligis

Abstract Soil Moisture and Ocean Salinity (SMOS) was chosen as the European Space Agency’s second Earth Explorer Opportunity mission. One of the objectives is to retrieve sea surface salinity (SSS) from measured brightness temperatures (TBs) at L band with a precision of 0.2 practical salinity units (psu) with averages taken over 200 km by 200 km areas and 10 days [as suggested in the requirements of the Global Ocean Data Assimilation Experiment (GODAE)]. The retrieval is performed here by an inverse model and additional information of auxiliary SSS, sea surface temperature (SST), and wind speed (W). A sensitivity study is done to observe the influence of the TBs and auxiliary data on the SSS retrieval. The key role of TB and W accuracy on SSS retrieval is verified. Retrieval is then done over the Atlantic for two cases. In case A, auxiliary data are simulated from two model outputs by adding white noise. The more realistic case B uses independent databases for reference and auxiliary ocean parameters. For these cases, the RMS error of retrieved SSS on pixel scale is around 1 psu (1.2 for case B). Averaging over GODAE scales reduces the SSS error by a factor of 12 (4 for case B). The weaker error reduction in case B is most likely due to the correlation of errors in auxiliary data. This study shows that SSS retrieval will be very sensitive to errors on auxiliary data. Specific efforts should be devoted to improving the quality of auxiliary data.


2014 ◽  
Vol 119 (9) ◽  
pp. 6171-6189 ◽  
Author(s):  
Wenqing Tang ◽  
Simon H. Yueh ◽  
Alexander G. Fore ◽  
Akiko Hayashi

2018 ◽  
Vol 10 (8) ◽  
pp. 1232 ◽  
Author(s):  
Semyon Grodsky ◽  
Douglas Vandemark ◽  
Hui Feng

Monitoring the cold and productive waters of the Gulf of Maine and their interactions with the nearby northwestern (NW) Atlantic shelf is important but challenging. Although remotely sensed sea surface temperature (SST), ocean color, and sea level have become routine, much of the water exchange physics is reflected in salinity fields. The recent invention of satellite salinity sensors, including the Soil Moisture Active Passive (SMAP) radiometer, opens new prospects in regional shelf studies. However, local sea surface salinity (SSS) retrieval is challenging due to both cold SST limiting salinity sensor sensitivity and proximity to land. For the NW Atlantic, our analysis shows that SMAP SSS is subject to an SST-dependent bias that is negative and amplifies in winter and early spring due to the SST-related drop in SMAP sensor sensitivity. On top of that, SMAP SSS is subject to a land contamination bias. The latter bias becomes noticeable and negative when the antenna land contamination factor (LC) exceeds 0.2%, and attains maximum negative values at LC = 0.4%. Coastward of LC = 0.5%, a significant positive land contamination bias in absolute SMAP SSS is evident. SST and land contamination bias components are seasonally dependent due to seasonal changes in SST/winds and terrestrial microwave properties. Fortunately, it is shown that SSS anomalies computed relative to a satellite SSS climatology can effectively remove such seasonal biases along with the real seasonal cycle. SMAP monthly SSS anomalies have sufficient accuracy and applicability to extend nearer to the coasts. They are used to examine the Gulf of Maine water inflow, which displayed important water intrusions in between Georges Banks and Nova Scotia in the winters of 2016/17 and 2017/18. Water intrusion patterns observed by SMAP are generally consistent with independent measurements from the European Soil Moisture Ocean Salinity (SMOS) mission. Circulation dynamics related to the 2016/2017 period and enhanced wind-driven Scotian Shelf transport into the Gulf of Maine are discussed.


2019 ◽  
Vol 11 (15) ◽  
pp. 1818 ◽  
Author(s):  
Daniele Ciani ◽  
Rosalia Santoleri ◽  
Gian Luigi Liberti ◽  
Catherine Prigent ◽  
Craig Donlon ◽  
...  

We present a study on the potential of the Copernicus Imaging Microwave Radiometer (CIMR) mission for the global monitoring of Sea-Surface Salinity (SSS) using Level-4 (gap-free) analysis processing. Space-based SSS are currently provided by the Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Active Passive (SMAP) satellites. However, there are no planned missions to guarantee continuity in the remote SSS measurements for the near future. The CIMR mission is in a preparatory phase with an expected launch in 2026. CIMR is focused on the provision of global coverage, high resolution sea-surface temperature (SST), SSS and sea-ice concentration observations. In this paper, we evaluate the mission impact within the Copernicus Marine Environment Monitoring Service (CMEMS) SSS processing chain. The CMEMS SSS operational products are based on a combination of in situ and satellite (SMOS) SSS and high-resolution SST information through a multivariate optimal interpolation. We demonstrate the potential of CIMR within the CMEMS SSS operational production after the SMOS era. For this purpose, we implemented an Observing System Simulation Experiment (OSSE) based on the CMEMS MERCATOR global operational model. The MERCATOR SSSs were used to generate synthetic in situ and CIMR SSS and, at the same time, they provided a reference gap-free SSS field. Using the optimal interpolation algorithm, we demonstrated that the combined use of in situ and CIMR observations improves the global SSS retrieval compared to a processing where only in situ observations are ingested. The improvements are observed in the 60% and 70% of the global ocean surface for the reconstruction of the SSS and of the SSS spatial gradients, respectively. Moreover, the study highlights the CIMR-based salinity patterns are more accurate both in the open ocean and in coastal areas. We conclude that CIMR can guarantee continuity for accurate monitoring of the ocean surface salinity from space.


2017 ◽  
Vol 1 (1) ◽  
Author(s):  
Mulyadi Abdul Wahid

The mission to observe the Sea Surface Salinity (SSS) from the space is not really new because it has been started from long time ago. The first mission was the Skylab which used a 1.4 GHz microwave radiometer in 1970’s. But this mission is still not as comprehensive as other missions which observe such as Sea Surface Temperature (SST), Sea Surface Height (SSH), Ocean Color, and so on. Realizing the importance of SSS distribution in the ocean and its influences to the Earth’s climate system has motivated the scientists to develop a new technique in observing the SSS from space and lead a mission called the SMOS mission which was launched in November 2, 2011. Besides observing the SSS, this mission observes the Soil Moisture as well. The Soil Moisture and Ocean Salinity (SMOS) mission aims to obtain global and regular measurements on the soil moisture and the ocean salinity. These measurements are essential for climate and hydrological models, among other purposes. SMOS payload is a L band (21 cm, 1.4 GHz) 2D interferometric radiometer on a generic Proteus platform. The mission lifetime is at least 3 years (0.5 for commissioning and 2.5 for normal operation) + 2 years (extended operation) + 10 years for the post-mission processing. Raw physical data, level 1 and level 2 products will be produced by the PDPC (SMOS Payload Data and Processing Centre). It is an ESA center located in Villafranca (Spain) and operated under the responsibility of ESA. The SMOS Ocean Salinity objective is accuracy better than 0.1 psu, with 10 days to monthly grid scale (200 km).


2021 ◽  
Vol 14 (1) ◽  
pp. 71
Author(s):  
Sarah B. Hall ◽  
Bulusu Subrahmanyam ◽  
James H. Morison

Salinity is the primary determinant of the Arctic Ocean’s density structure. Freshwater accumulation and distribution in the Arctic Ocean have varied significantly in recent decades and certainly in the Beaufort Gyre (BG). In this study, we analyze salinity variations in the BG region between 2012 and 2017. We use in situ salinity observations from the Seasonal Ice Zone Reconnaissance Surveys (SIZRS), CTD casts from the Beaufort Gyre Exploration Project (BGP), and the EN4 data to validate and compare with satellite observations from Soil Moisture Active Passive (SMAP), Soil Moisture and Ocean Salinity (SMOS), and Aquarius Optimally Interpolated Sea Surface Salinity (OISSS), and Arctic Ocean models: ECCO, MIZMAS, HYCOM, ORAS5, and GLORYS12. Overall, satellite observations are restricted to ice-free regions in the BG area, and models tend to overestimate sea surface salinity (SSS). Freshwater Content (FWC), an important component of the BG, is computed for EN4 and most models. ORAS5 provides the strongest positive SSS correlation coefficient (0.612) and lowest bias to in situ observations compared to the other products. ORAS5 subsurface salinity and FWC compare well with the EN4 data. Discrepancies between models and SIZRS data are highest in GLORYS12 and ECCO. These comparisons identify dissimilarities between salinity products and extend challenges to observations applicable to other areas of the Arctic Ocean.


2021 ◽  
Author(s):  
Xavier Perrot ◽  
Jacqueline Boutin ◽  
Jean Luc Vergely ◽  
Frédéric Rouffi ◽  
Adrien Martin ◽  
...  

<p>This study is performed in the frame of the European Space Agency (ESA) Climate Change Initiative (CCI+) for Sea Surface Salinity (SSS), which aims at generating global SSS fields from all available satellite L-band radiometer measurements over the longest possible period with a great stability. By combining SSS from the Soil Moisture and Ocean Salinity, SMOS, Aquarius and the Soil Moisture Active Passive, SMAP missions, CCI+SSS fields (Boutin et al. 2020) are the only one to provide a 10 year time series of satellite salinity with such quality: global rms difference of weekly 25x25km<span>2 </span>CCI+SSS with respect to in situ Argo SSS of 0.17 pss, correlation coefficient of 0.97 (see https://pimep.ifremer.fr/diffusion/analyses/mdb-database/GO/cci-l4-esa-merged-oi-v2.31-7dr/argo/report/pimep-mdb-report_GO_cci-l4-esa-merged-oi-v2.31-7dr_argo_20201215.pdf). Nevertheless, we found that some systematic biases remained. In this presentation, we will show how they will be reduced in the next CCI+SSS version.</p><p>The key satellite mission ensuring the longest time period, since 2010, at global scale, is SMOS. We implemented a re-processing of the whole SMOS dataset by changing some key points. Firstly we replace the Klein and Swift (1977) dielectric constant parametrization by the new Boutin et al. (2020) one. Secondly we change the reference dataset used to perform a vicarious calibration over the south east Pacific Ocean (the so-called Ocean Target Transformation), by using Argo interpolated fields (ISAS, Gaillard et al. 2016) contemporaneous to the satellite measurements instead of the World Ocean Atlas climatology. And thirdly the auxiliary data (wind, SST, atmospheric parameters) used as priors in the retrieval scheme, which come in the original SMOS processing from the ECMWF forecast model were replaced by ERA5 reanalysis.</p><p>Our results are showing a quantitative improvement in the stability of the SMOS CCI+SSS with respect to in situ measurements for all the period as well as a decrease of the spread of the difference between SMOS and in situ salinity measurements.</p><p>Bibliography:</p><p>J. Boutin et al. (2020), Correcting Sea Surface Temperature Spurious Effects in Salinity Retrieved From Spaceborne L-Band Radiometer Measurements, IEEE Transactions on Geoscience and Remote Sensing, doi: 10.1109/TGRS.2020.3030488.</p><p>F. Gaillard et al. (2016), In Situ–Based Reanalysis of the Global Ocean Temperature and Salinity with ISAS: Variability of the Heat Content and Steric Height, Journal of Climate, vol. 29, no. 4, pp. 1305-1323, doi: 10.1175/JCLI-D-15-0028.1.</p><p>L. Klein and C. Swift (1977), An improved model for the dielectric constant of sea water at microwave frequencies, IEEE Transactions on Antennas and Propagation, vol. 25, no. 1, pp. <span>104-111, </span>doi: 10.1109/JOE.1977.1145319.</p><p>Data reference:</p><p>J. Boutin et al. (2020): ESA Sea Surface Salinity Climate Change Initiative (Sea_Surface_Salinity_cci): Weekly sea surface salinity product, v2.31, for 2010 to 2019. Centre for Environmental Data Analysis. https://catalogue.ceda.ac.uk/uuid/eacb7580e1b54afeaabb0fd2b0a53828</p>


2019 ◽  
Vol 11 (7) ◽  
pp. 750 ◽  
Author(s):  
Emmanuel Dinnat ◽  
David Le Vine ◽  
Jacqueline Boutin ◽  
Thomas Meissner ◽  
Gary Lagerloef

Since 2009, three low frequency microwave sensors have been launched into space with the capability of global monitoring of sea surface salinity (SSS). The European Space Agency’s (ESA’s) Microwave Imaging Radiometer using Aperture Synthesis (MIRAS), onboard the Soil Moisture and Ocean Salinity mission (SMOS), and National Aeronautics and Space Administration’s (NASA’s) Aquarius and Soil Moisture Active Passive mission (SMAP) use L-band radiometry to measure SSS. There are notable differences in the instrumental approaches, as well as in the retrieval algorithms. We compare the salinity retrieved from these three spaceborne sensors to in situ observations from the Argo network of drifting floats, and we analyze some possible causes for the differences. We present comparisons of the long-term global spatial distribution, the temporal variability for a set of regions of interest and statistical distributions. We analyze some of the possible causes for the differences between the various satellite SSS products by reprocessing the retrievals from Aquarius brightness temperatures changing the model for the sea water dielectric constant and the ancillary product for the sea surface temperature. We quantify the impact of these changes on the differences in SSS between Aquarius and SMOS. We also identify the impact of the corrections for atmospheric effects recently modified in the Aquarius SSS retrievals. All three satellites exhibit SSS errors with a strong dependence on sea surface temperature, but this dependence varies significantly with the sensor. We show that these differences are first and foremost due to the dielectric constant model, then to atmospheric corrections and to a lesser extent to the ancillary product of the sea surface temperature.


Sign in / Sign up

Export Citation Format

Share Document