Depolarization in Ice Crystals and Its Effect on Radar Polarimetric Measurements

2007 ◽  
Vol 24 (7) ◽  
pp. 1256-1267 ◽  
Author(s):  
Alexander V. Ryzhkov ◽  
Dusan S. Zrnić

Abstract Simultaneous transmission and reception of horizontally and vertically polarized waves is a preferable choice technique for dual-polarization weather radar. One of the consequences of such a choice is possible cross-coupling between orthogonally polarized waves. Cross-coupling depends on depolarizing properties of propagation media, and it is usually negligible in rain because the net mean canting angle of raindrops is close to zero. Snow crystals at the tops of thunderstorm clouds are often canted in the presence of strong electric fields and produce noticeable cross-coupling between radar signals at horizontal and vertical polarizations if both signals are transmitted and received simultaneously. As a result, peculiar-looking radial signatures of differential reflectivity ZDR and differential phase ΦDP are commonly observed in the crystal regions of thunderstorms. The paper presents examples of strong depolarization in oriented crystals from the data collected by the polarimetric prototype of the Weather Surveillance Radar-1988 Doppler (WSR-88D) and a theoretical model that explains the results of measurements. It is shown that the sign and magnitude of the ZDR and ΦDP signatures strongly depend on the orientation of crystals and a system differential phase on transmission.

2014 ◽  
Vol 53 (6) ◽  
pp. 1678-1695 ◽  
Author(s):  
J. C. Hubbert ◽  
S. M. Ellis ◽  
W.-Y. Chang ◽  
Y.-C. Liou

AbstractIn this paper, experimental X-band polarimetric radar data from simultaneous transmission of horizontal (H) and vertical (V) polarizations (SHV) are shown, modeled, and microphysically interpreted. Both range–height indicator data and vertical-pointing X-band data from the Taiwan Experimental Atmospheric Mobile-Radar (TEAM-R) are presented. Some of the given X-band data are biased, which is very likely caused by cross coupling of the H and V transmitted waves as a result of aligned, canted ice crystals. Modeled SHV data are used to explain the observed polarimetric signatures. Coincident data from the National Center for Atmospheric Research S-band polarimetric radar (S-Pol) are presented to augment and support the X-band polarimetric observations and interpretations. The polarimetric S-Pol data are obtained via fast-alternating transmission of horizontal and vertical polarizations (FHV), and thus the S-band data are not contaminated by the cross coupling (except the linear depolarization ratio LDR) observed in the X-band data. The radar data reveal that there are regions in the ice phase where electric fields are apparently aligning ice crystals near vertically and thus causing negative specific differential phase Kdp. The vertical-pointing data also indicate the presence of preferentially aligned ice crystals that cause differential reflectivity Zdr and differential phase ϕdp to be strong functions of azimuth angle.


2017 ◽  
Vol 56 (7) ◽  
pp. 1797-1816 ◽  
Author(s):  
Alexander Ryzhkov ◽  
Sergey Y. Matrosov ◽  
Valery Melnikov ◽  
Dusan Zrnic ◽  
Pengfei Zhang ◽  
...  

AbstractA new methodology for estimating the depolarization ratio (DR) by dual-polarization radars with simultaneous transmission/reception of orthogonally polarized waves together with traditionally measured differential reflectivity ZDR, correlation coefficient ρhυ, and differential phase ΦDP in a single mode of operation is suggested. This depolarization ratio can serve as a proxy for circular depolarization ratio measured by radars with circular polarization. The suggested methodology implies the use of a high-power phase shifter to control the system differential phase on transmission and a special signal processing to eliminate the detrimental impact of differential phase on the estimate of DR. The feasibility of the suggested approach has been demonstrated by retrieving DR from the standard polarimetric variables and the raw in-phase I and quadrature Q components of radar signals and by implementing the scheme on a C-band radar with simultaneous transmission/reception of horizontally and vertically polarized waves. Possible practical implications of using DR include the detection of hail and the determination of its size above the melting layer, the discrimination between various habits of ice aloft, and the possible identification and quantification of riming, which is associated with the presence of supercooled cloud water. Some examples of these applications are presented.


2019 ◽  
Vol 12 (11) ◽  
pp. 5897-5911 ◽  
Author(s):  
Cuong M. Nguyen ◽  
Mengistu Wolde ◽  
Alexei Korolev

Abstract. This paper presents a methodology for ice water content (IWC) retrieval from a dual-polarization side-looking X-band airborne radar. Measured IWC from aircraft in situ probes is weighted by a function of the radar differential reflectivity (Zdr) to reduce the effects of ice crystal shape and orientation on the variation in IWC – specific differential phase (Kdp) joint distribution. A theoretical study indicates that the proposed method, which does not require a knowledge of the particle size distribution (PSD) and number density of ice crystals, is suitable for high-ice-water-content (HIWC) regions in tropical convective clouds. Using datasets collected during the High Altitude Ice Crystals – High Ice Water Content (HAIC-HIWC) international field campaign in Cayenne, French Guiana (2015), it is shown that the proposed method improves the estimation bias by 35 % and increases the correlation by 4 % on average, compared to the method using specific differential phase (Kdp) alone.


2020 ◽  
Vol 37 (8) ◽  
pp. 1423-1436
Author(s):  
Valery Melnikov

ABSTRACTThe impacts of the differential phase of incident radar waves (ψi) on measured differential reflectivity (ZDR), differential phase, and correlation coefficient from ice cloud particles are presented for radars employing simultaneous transmission and reception of orthogonally polarized waves (SHV radar design). The maximal values of ZDR and the differential phase upon scattering (δ) from ice particles are obtained as functions of ψi. It is shown that SHV δ from ice particles can exceed a dozen degrees whereas the intrinsic δ is of a few hundredths of a degree. In melting layers, the δ values from particles obeying the Rayleigh scattering law can be several degrees depending on ψi so that, to explain such δ values, an assumption of resonance scattering is not necessary. The phase δ affects the estimation of specific differential phase (KDP) in icy media and, therefore, the phase δ should be measured. The radar differential phase upon transmission ψt is a part of ψi and, therefore, affects the δ values. A radar capability to alter ψi by varying ψt could deliver additional information about scattering media.


2014 ◽  
Vol 53 (6) ◽  
pp. 1659-1677 ◽  
Author(s):  
J. C. Hubbert ◽  
S. M. Ellis ◽  
W.-Y. Chang ◽  
S. Rutledge ◽  
M. Dixon

AbstractData collected by the National Center for Atmospheric Research S-band polarimetric radar (S-Pol) during the Terrain-Influenced Monsoon Rainfall Experiment (TiMREX) in Taiwan are analyzed and used to infer storm microphysics in the ice phase of convective storms. Both simultaneous horizontal (H) and vertical (V) (SHV) transmit polarization data and fast-alternating H and V (FHV) transmit polarization data are used in the analysis. The SHV Zdr (differential reflectivity) data show radial stripes of biased data in the ice phase that are likely caused by aligned and canted ice crystals. Similar radial streaks in the linear depolarization ratio (LDR) are presented that are also biased by the same mechanism. Dual-Doppler synthesis and sounding data characterize the storm environment and support the inferences concerning the ice particle types. Small convective cells were observed to have both large positive and large negative Kdp (specific differential phase) values. Negative Kdp regions suggest that ice crystals are vertically aligned by electric fields. Since high |Kdp| values of 0.8° km−1 in both negative and positive Kdp regions in the ice phase are accompanied by Zdr values close to 0 dB, it is inferred that there are two types of ice crystals present: 1) smaller aligned ice crystals that cause the Kdp signatures and 2) larger aggregates or graupel that cause the Zdr signatures. The inferences are supported with simulated ice particle scattering calculations. A radar scattering model is used to explain the anomalous radial streaks in SHV and LDR.


2015 ◽  
Vol 32 (4) ◽  
pp. 659-674 ◽  
Author(s):  
Valery M. Melnikov ◽  
Michael J. Istok ◽  
John K. Westbrook

AbstractRadar echoes from insects, birds, and bats in the atmosphere exhibit both symmetry and asymmetry in polarimetric patterns. Symmetry refers to similar magnitudes of polarimetric variables at opposite azimuths, and asymmetry relegates to differences in these magnitudes. Asymmetry can be due to different species observed at different azimuths. It is shown in this study that when both polarized waves are transmitted simultaneously, asymmetric patterns can also be caused by insects of the same species that are oriented in the same direction. A model for scattering of simultaneously transmitted horizontally and vertically polarized radar waves by insects is developed. The model reproduces the main features of asymmetric patterns in differential reflectivity: the copolar correlation coefficient and the differential phase. The radar differential phase on transmit between horizontally and vertically polarized waves plays a critical role in the formations of the asymmetric patterns. The width-to-length ratios of insects’ bodies and their orientation angles are retrieved from matching the model output with radar data.


2010 ◽  
Vol 27 (10) ◽  
pp. 1599-1607 ◽  
Author(s):  
J. C. Hubbert ◽  
S. M. Ellis ◽  
M. Dixon ◽  
G. Meymaris

Abstract In this second article in a two-part work, the biases of weather radar polarimetric variables from simultaneous horizontally and vertically transmit (SHV) data are investigated. The biases are caused by cross coupling of the simultaneously transmitted vertical (V) and horizontal (H) electric fields. There are two primary causes of cross coupling: 1) the nonzero mean canting angle of the propagation medium (e.g., canted ice crystals) and 2) antenna polarization errors. Given herein are experimental data illustrating both bias sources. In Part I, a model is developed and used to quantify cross coupling and its impact on polarization measurements. Here, in Part II, experimental data from the National Center for Atmospheric Research’s (NCAR’s) S-band dual-polarimetric Doppler radar (S-Pol) and the National Severe Storms Laboratory’s polarimetric Weather Surveillance Radar-1988 Doppler (WSR-88D), KOUN, are used to illustrate biases in differential reflectivity (Zdr). The S-Pol data are unique: both SHV data and fast alternating H and V transmit (FHV) data are gathered in close time proximity, and thus the FHV data provide “truth” for the SHV data. Specifically, the SHV Zdr bias in rain caused by antenna polarization errors is clearly demonstrated by the data. This has not been shown previously in the literature.


2015 ◽  
Vol 54 (3) ◽  
pp. 573-595 ◽  
Author(s):  
Earle R. Williams ◽  
David J. Smalley ◽  
Michael F. Donovan ◽  
Robert G. Hallowell ◽  
Kenta T. Hood ◽  
...  

AbstractThe organized behavior of differential radar reflectivity (ZDR) is documented in the cold regions of a wide variety of stratiform precipitation types occurring in both winter and summer. The radar targets and attendant cloud microphysical conditions are interpreted within the context of measurements of ice crystal types in laboratory diffusion chambers in which humidity and temperature are both stringently controlled. The overriding operational interest here is in the identification of regions prone to icing hazards with long horizontal paths. Two predominant regimes are identified: category A, which is typified by moderate reflectivity (from 10 to 30 dBZ) and modest +ZDR values (from 0 to +3 dB) in which both supercooled water and dendritic ice crystals (and oriented aggregates of ice crystals) are present at a mean temperature of −13°C, and category B, which is typified by small reflectivity (from −10 to +10 dBZ) and the largest +ZDR values (from +3 to +7 dB), in which supercooled water is dilute or absent and both flat-plate and dendritic crystals are likely. The predominant positive values for ZDR in many case studies suggest that the role of an electric field on ice particle orientation is small in comparison with gravity. The absence of robust +ZDR signatures in the trailing stratiform regions of vigorous summer squall lines may be due both to the infusion of noncrystalline ice particles (i.e., graupel and rimed aggregates) from the leading deep convection and to the effects of the stronger electric fields expected in these situations. These polarimetric measurements and their interpretations underscore the need for the accurate calibration of ZDR.


Nature ◽  
1964 ◽  
Vol 204 (4965) ◽  
pp. 1293-1294 ◽  
Author(s):  
J. LATHAM ◽  
C. P. R. SAUNDERS

Sign in / Sign up

Export Citation Format

Share Document