Comparing the Convective Structure and Microphysics in Two Sahelian Mesoscale Convective Systems: Radar Observations and CRM Simulations

2013 ◽  
Vol 141 (2) ◽  
pp. 582-601 ◽  
Author(s):  
Nick Guy ◽  
Xiping Zeng ◽  
Steven A. Rutledge ◽  
Wei-Kuo Tao

Abstract Two mesoscale convective systems (MCSs) observed during the African Monsoon Multidisciplinary Analyses (AMMA) experiment are simulated using the three-dimensional (3D) Goddard Cumulus Ensemble model. This study was undertaken to determine the performance of the cloud-resolving model in representing distinct convective and microphysical differences between the two MCSs over a tropical continental location. Simulations are performed using 1-km horizontal grid spacing, a lower limit on current embedded cloud-resolving models within a global multiscale modeling framework. Simulated system convective structure and microphysics are compared to radar observations using contoured frequency-by-altitude diagrams (CFADs), calculated ice and water mass, and identified hydrometeor variables. Vertical distributions of ice hydrometeors indicate underestimation at the mid- and upper levels, partially due to the inability of the model to produce adequate system heights. The abundance of high-reflectivity values below and near the melting level in the simulation led to a broadening of the CFAD distributions. Observed vertical reflectivity profiles show that high reflectivity is present at greater heights than the simulations produced, thought to be a result of using a single-moment microphysics scheme. Relative trends in the population of simulated hydrometeors are in agreement with observations, though a secondary convective burst is not well represented. Despite these biases, the radar-observed differences between the two cases are noticeable in the simulations as well, suggesting that the model has some skill in capturing observed differences between the two MCSs.

2010 ◽  
Vol 138 (3) ◽  
pp. 863-885 ◽  
Author(s):  
Matthew S. Wandishin ◽  
David J. Stensrud ◽  
Steven L. Mullen ◽  
Louis J. Wicker

Abstract Mesoscale convective systems (MCSs) are a dominant climatological feature of the central United States and are responsible for a substantial fraction of warm-season rainfall. Yet very little is known about the predictability of MCSs. To help address this situation, a previous paper by the authors examined a series of ensemble MCS simulations using a two-dimensional version of a storm-scale (Δx = 1 km) model. Ensemble member perturbations in the preconvective environment, namely, wind speed, relative humidity, and convective instability, are based on current 24-h forecast errors from the North American Model (NAM). That work is now extended using a full three-dimensional model. Results from the three-dimensional simulations of the present study resemble those found in two dimensions. The model successfully produces an MCS within 100 km of the location of the control run in around 70% of the ensemble runs using perturbations to the preconvective environment consistent with 24-h forecast errors, while reducing the preconvective environment uncertainty to the level of current analysis errors improves the success rate to nearly 85%. This magnitude of improvement in forecasts of environmental conditions would represent a radical advance in numerical weather prediction. The maximum updraft and surface wind forecast uncertainties are of similar magnitude to their two-dimensional counterparts. However, unlike the two-dimensional simulations, in three dimensions, the improvement in the forecast uncertainty of storm features requires the reduction of preconvective environmental uncertainty for all perturbed variables. The MCSs in many of the runs resemble bow echoes, but surface winds associated with these solutions, and the perturbation profiles that produce them, are nearly indistinguishable from the nonbowing solutions, making any conclusions about the bowlike systems difficult.


2006 ◽  
Vol 63 (4) ◽  
pp. 1231-1252 ◽  
Author(s):  
Michael C. Coniglio ◽  
David J. Stensrud ◽  
Louis J. Wicker

Abstract Recent observational studies have shown that strong midlatitude mesoscale convective systems (MCSs) tend to decay as they move into environments with less instability and smaller deep-layer vertical wind shear. These observed shear profiles that contain significant upper-level shear are often different from the shear profiles considered to be the most favorable for the maintenance of strong, long-lived convective systems in some past idealized simulations. Thus, to explore the role of upper-level shear in strong MCS environments, a set of two-dimensional (2D) simulations of density currents within a dry, statically neutral environment is used to quantify the dependence of lifting along an idealized cold pool on the upper-level shear. A set of three-dimensional (3D) simulations of MCSs is produced to gauge the effects of the upper-level shear in a more realistic framework. Results from the 2D experiments show that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of parcels despite a decrease in the vertical velocity along the cold pool interface. Parcels that are elevated above the surface (1–2 km) overturn and are responsible for the deep lifting in the deep-shear environments, while the surface-based parcels typically are lifted through the cold pool region in a rearward-sloping path. This deep overturning helps to maintain the leading convection and greatly increases the size and total precipitation output of the convective systems in more complex 3D simulations, even in the presence of 3D structures. These results show that the shear profile throughout the entire troposphere must be considered to gain a more complete understanding of the structure and maintenance of strong midlatitude MCSs.


2021 ◽  
Vol 256 ◽  
pp. 105580
Author(s):  
Dongxia Liu ◽  
Mengyu Sun ◽  
Debin Su ◽  
Wenjing Xu ◽  
Han Yu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document