scholarly journals A Three-Dimensional Scale-Adaptive Turbulent Kinetic Energy Scheme in the WRF-ARW Model

2018 ◽  
Vol 146 (7) ◽  
pp. 2023-2045 ◽  
Author(s):  
Xu Zhang ◽  
Jian-Wen Bao ◽  
Baode Chen ◽  
Evelyn D. Grell

A new three-dimensional (3D) turbulent kinetic energy (TKE) subgrid mixing scheme is developed using the Advanced Research version of the Weather Research and Forecasting (WRF) Model (WRF-ARW) to address the gray-zone problem in the parameterization of subgrid turbulent mixing. The new scheme combines the horizontal and vertical subgrid turbulent mixing into a single energetically consistent framework, in contrast to the conventionally separate treatment of the vertical and horizontal mixing. The new scheme is self-adaptive to the grid-size change between the large-eddy simulation (LES) and mesoscale limits. A series of dry convective boundary layer (CBL) idealized simulations are carried out to compare the performance of the new scheme and the conventional treatment of subgrid mixing to the WRF-ARW LES dataset. The importance of including the nonlocal component in the vertical buoyancy specification in the newly developed general TKE-based scheme is illustrated in the comparison. The improvements of the new scheme with the conventional treatment of subgrid mixing across the gray-zone model resolutions are demonstrated through the partitioning of the total vertical flux profiles. Results from real-case simulations show the feasibility of using the new scheme in the WRF Model in lieu of the conventional treatment of subgrid mixing.

2017 ◽  
Vol 10 (12) ◽  
pp. 4511-4523 ◽  
Author(s):  
Tarandeep S. Kalra ◽  
Alfredo Aretxabaleta ◽  
Pranay Seshadri ◽  
Neil K. Ganju ◽  
Alexis Beudin

Abstract. Coastal hydrodynamics can be greatly affected by the presence of submerged aquatic vegetation. The effect of vegetation has been incorporated into the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) modeling system. The vegetation implementation includes the plant-induced three-dimensional drag, in-canopy wave-induced streaming, and the production of turbulent kinetic energy by the presence of vegetation. In this study, we evaluate the sensitivity of the flow and wave dynamics to vegetation parameters using Sobol' indices and a least squares polynomial approach referred to as the Effective Quadratures method. This method reduces the number of simulations needed for evaluating Sobol' indices and provides a robust, practical, and efficient approach for the parameter sensitivity analysis. The evaluation of Sobol' indices shows that kinetic energy, turbulent kinetic energy, and water level changes are affected by plant stem density, height, and, to a lesser degree, diameter. Wave dissipation is mostly dependent on the variation in plant stem density. Performing sensitivity analyses for the vegetation module in COAWST provides guidance to optimize efforts and reduce exploration of parameter space for future observational and modeling work.


1994 ◽  
Vol 98 (978) ◽  
pp. 311-318
Author(s):  
C.P. Yeung ◽  
L.C. Squire

SummaryThe three-dimensional vortex/boundary layer interaction of a type which may occur on a high-lift aerofoil has been studied. The experimental configuration simulates the trailing vortex system generated by two differentially-deflected slats which interact with an otherwise two-dimensional boundary layer developed on the wing surface under a nominal zero pressure gradient. The mean and turbulent flowfields are measured by a triple hot-wire system. The measurements show that the trailing vortex system includes the vortex sheets shed from the slats and the single vortex formed at the discontinuity between them. The single vortex moves sideways and interacts with the boundary layer as it develops downstream. During the interaction with the boundary layer, the low momentum, high turbulent-kinetic energy flow carrying negative longitudinal vorticity is entrained from the boundary layer and rolled into the vortex at the line of lateral convergence on the test surface. Likewise, at the line of lateral divergence, the high momentum, low turbulent kinetic energy flow carried by the vortex impinges on the boundary layer, suppressing the turbulent energy level and the growth of the boundary layer.


2013 ◽  
Vol 70 (6) ◽  
pp. 1795-1805 ◽  
Author(s):  
Hyeyum Hailey Shin ◽  
Song-You Hong ◽  
Yign Noh ◽  
Jimy Dudhia

Abstract Turbulent kinetic energy (TKE) is derived from a first-order planetary boundary layer (PBL) parameterization for convective boundary layers: the nonlocal K-profile Yonsei University (YSU) PBL. A parameterization for the TKE equation is developed to calculate TKE based on meteorological profiles given by the YSU PBL model. For this purpose buoyancy- and shear-generation terms are formulated consistently with the YSU scheme—that is, the combination of local, nonlocal, and explicit entrainment fluxes. The vertical transport term is also formulated in a similar fashion. A length scale consistent with the K profile is suggested for parameterization of dissipation. Single-column model (SCM) simulations are conducted for a period in the second Global Energy and Water Cycle Experiment (GEWEX) Atmospheric Boundary Layer Study (GABLS2) intercomparison case. Results from the SCM simulations are compared with large-eddy simulation (LES) results. The daytime evolution of the vertical structure of TKE matches well with mixed-layer development. The TKE profile is shaped like a typical vertical velocity (w) variance, and its maximum is comparable to that from the LES. By varying the dissipation length from −23% to +13% the TKE maximum is changed from about −15% to +7%. After normalization, the change does not exceed the variability among previous studies. The location of TKE maximum is too low without the effects of the nonlocal TKE transport.


1986 ◽  
Vol 108 (4) ◽  
pp. 806-813 ◽  
Author(s):  
H. Ozoe ◽  
A. Mouri ◽  
M. Hiramitsu ◽  
S. W. Churchill ◽  
N. Lior

This paper presents a model and numerical results for turbulent natural convection in a cubical enclosure heated from below, cooled on a portion of one vertical side wall and insulated on all other surfaces. Three-dimensional balances were derived for material, energy, and the three components of momentum, as well as for the turbulent kinetic energy k and the rate of dissipation of turbulent kinetic energy ε. The constants used in the model were the same as those used by Fraikin et al. for two-dimensional convection in a channel. Illustrative transient calculations were carried out for Ra = 106 and 107 and Pr = 0.7. Both the dominant component of the vector potential and the Nusselt number were found to converge to a steady state. Isothermal lines and velocity vectors for vertical cross sections normal to the cooled wall indicated three-dimensional effects near the side walls. A top view of the velocity vectors revealed a downward spiral flow near the side walls along the cooled vertical wall. A weak spiral flow was also found along the side walls near the wall opposing the partially cooled one. The highest values of the eddy diffusivity were 2.6 and 5.8 times the molecular kinematic viscosity for Ra = 106 and 107, respectively. A coaxial double spiral movement, similar to that previously reported for laminar natural convection, was found for the time-averaged flow field. This computing scheme is expected to be applicable to other thermal boundary conditions.


2013 ◽  
Vol 8 (2) ◽  
pp. 119-127 ◽  
Author(s):  
D. K. Chibwe ◽  
G. Akdogan ◽  
P. Taskinen

Abstract Typical current operation of lateral-blown Peirce-Smith converters (PSCs) has the common phenomenon of splashing and slopping due to air injection. The splashing and wave motion in these converters cause metal losses and potential production lost time due to intermittent cleaning of the converter mouth and thus reduced process throughput. Understanding of the effect of combined top and lateral blowing could possibly lead to alternative technology advancement for increased process efficiency. In this study, computational fluid dynamics (CFD) simulations of conventional common practice (lateral blowing) and combined (top and lateral blowing) in a PSC were carried out, and results of flow variables (bath velocity, turbulence kinetic energy, etc.) were compared. The two-dimensional (2-D) and three-dimensional (3-D) simulations of the three-phase system (air–matte–slag) were executed utilizing a commercial CFD numerical software code, ANSYS FLUENT 14.0. These simulations were performed employing the volume of fluid and realizable turbulence models to account for multiphase and turbulent nature of the flow, respectively. Upon completion of the simulations, the results of the models were analysed and compared by means of density contour plots, velocity vector plots, turbulent kinetic energy vector plots, average turbulent kinetic energy, turbulent intensity contour plots and average matte bulk velocity. It was found that both blowing configuration and slag layer thickness have significant effects on mixing propagation, wave formation and splashing in the PSC as the results showed wave formation and splashing significantly being reduced by employing combined top- and lateral-blowing configurations.


2020 ◽  
Vol 77 (7) ◽  
pp. 2605-2626 ◽  
Author(s):  
Bowen Zhou ◽  
Yuhuan Li ◽  
Kefeng Zhu

AbstractBased on a priori analysis of large-eddy simulations (LESs) of the convective atmospheric boundary layer, improved turbulent mixing and dissipation length scales are proposed for a turbulence kinetic energy (TKE)-based planetary boundary layer (PBL) scheme. The turbulent mixing length incorporates surface similarity and TKE constraints in the surface layer, and makes adjustments for lateral entrainment effects in the mixed layer. The dissipation length is constructed based on balanced TKE budgets accounting for shear, buoyancy, and turbulent mixing. A nongradient term is added to the TKE flux to correct for nonlocal turbulent mixing of TKE. The improved length scales are implemented into a PBL scheme, and are tested with idealized single-column convective boundary layer (CBL) cases. Results exhibit robust applicability across a broad CBL stability range, and are in good agreement with LES benchmark simulations. It is then implemented into a community atmospheric model and further evaluated with 3D real-case simulations. Results of the new scheme are of comparable quality to three other well-established PBL schemes. Comparisons between simulated and radiosonde-observed profiles show favorable performance of the new scheme on a clear day.


Sign in / Sign up

Export Citation Format

Share Document