slag layer
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 31)

H-INDEX

10
(FIVE YEARS 2)

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122851
Author(s):  
Xiaodan Bao ◽  
Ming Gong ◽  
Zhongjie Shen ◽  
Jianliang Xu ◽  
Qinfeng Liang ◽  
...  

Author(s):  
Е. Sigarev ◽  
G. Kryachko ◽  
A. Dovzhenko ◽  
Yu. Lobanov ◽  
A. Pohvalitiy

The results studies influence physicochemical properties and thickness cover slag, formed during ladle desulfurization pig iron by blowing a mixture of lime and magnesium, features formation a breaker on the surface bath and the level of metal losses with emissions outside ladle from this zone are presented. The necessity creating conditions for ensuring height breaker, which would not exceed thickness slag layer on the surface bath, has been substantiated. Using results of the high-temperature simulation blowing the cast iron melt with a neutral gas supplied through the nozzles tips stationary and rotating submersible lances, features development of counter waves and metal splashes in the absence and during formation slag cover with thickness of 30—80 mm on the surface bath are determined. The features change in the height and area breakers are determined depending on the gas flow rate for blowing bath and thickness slag. Based on the analysis results low-temperature modeling bath blowing, scientific ideas about the combined effect of the bath blowing intensity, speed of rotation submerged lance and thickness slag layer on the diameter bubbling zone, gas saturation of the bath and features wave formation on its surface in the slag-free zone were further developed (so-called «eye»). The nature relationship between length of the gas jet from lance nozzle, diameter «eye», and geometric parameters breaker has been established. It is shown that dependence profile breaker on speed of rotation lance and thickness slag layer is nonlinear. So, blowing bath through tip of a rotating lance with one nozzle at 240 rpm. with a gas flow rate of 2.2 l/min. creates conditions for raising top breaker to a height that is 33 % higher than the current thickness slag layer and contributes to the intensification formation of waves and bursts on the surface bath. With a decrease in the gas flow rate to 1.0 l/min., Under other unchanged conditions, height breaker is already 2/3 of the height slag layer, and as thickness slag decreases proportionally decreases. The smallest, recorded in the experiments, relative height breaker was 33.3% of the slag thickness at a lance rotation speed in the range of 90—120 rpm. Mathematical models are proposed that are suitable for calculating height breakers depending on the thickness slag layer, speed of rotation lance and intensity of gas injection into the bath. Taking into account established mutually opposite effect thickness of the cover slag layer and speed of rotation submerged lance on the «eye» area and height of the breaker, it is advisable to continue search for ways to improve design tip submerged lance and slag mode of ladle desulfurization.


2021 ◽  
Vol 9 ◽  
Author(s):  
Zongliang Zuo ◽  
Yan Feng ◽  
Siyi Luo ◽  
Xinjiang Dong ◽  
Xiaoteng Li ◽  
...  

Copper slag is a solid pollutant with high recyclability. Reduction and separation are regarded as effective disposal methods. However, during the melting process, the separation and migration behavior of elements in the copper slag is complicated. Thus, the formation of pollutants cannot be controlled merely by optimizing the operation parameters. The elemental distribution and migration behavior are discussed in this work. In reduction experiments, the copper slag smelting liquid was divided into three layers: a reduction slag layer, a reactive boundary layer, and an iron ingot layer. Reduction slag and ingot iron were on the top and bottom of the liquid, respectively. Residual carbon oozed at the interface. C can react with reducible “O” atoms, which exist in 2FeO·SiO2, Fe3O4, and CuO. Meanwhile, CO was generated and overflowed from the liquid layer. After reduction by C or CO, metallic iron and copper were produced and migrated to the iron ingot layer. In the liquid, S gradually diffused into the upper layer. Some of the ZnO and CuS spilled from the liquid into the flume. After reduction, CaO·SiO2 was generated and moved to the upper layer.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6978
Author(s):  
Francisco José Jiménez-Espadafor Aguilar ◽  
José Antonio Vélez Godiño ◽  
Miguel Torres García ◽  
José María. Gallardo Fuentes ◽  
Eduardo Díaz Gutiérrez

Fire refining of blister copper is a singular process at very high temperatures (~1400 K), which means the furnace is exposed to heavy thermal loads. The charge is directly heated by an internal burner. The impurities in the charge oxidize with the flux of hot gases, creating a slag layer on the top of the molten bath. This slag is periodically removed, which implies liquid metal flowing through the furnace port. To address its malfunction, a re-design of the furnace port is presented in this work. Due to the lack of previous technical information, the convective heat transfer coefficient between the slag and the furnace port was characterized through a combination of an experimental test and a three-dimensional transient model. Finally, the original design of the furnace port was analyzed and modifications were proposed, resulting in a reduction of the average temperature of the critical areas up to 300 K. This improvement prevents the anchoring of the accretion layer over the port plates and the steel plate from being attacked by the copper.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1784
Author(s):  
Fang Wang ◽  
Boyang Sun ◽  
Zhongqiu Liu ◽  
Baokuan Li ◽  
Shuo Huang ◽  
...  

In order to meet the requirement of high-quality ingots, the vibrating electrode technique in the electroslag remelting (ESR) process has been proposed. Non-metallic inclusions in ingots may cause serious defects and deteriorate mechanical properties of final products. Moreover, the dimension, number and distribution of non-metallic inclusions should be strictly controlled during the ESR process in order to produce high-quality ingots. A transient 2-D coupled model is established to analyze the motion behavior of inclusions in the lab-scale ESR process with a vibrating electrode, especially under the influence of the vibration frequency, current, slag layer thickness, and filling ratio, as well as type and diameter of inclusions. Simulation model of inclusions motion behavior is established based on the Euler-Lagrange approach. The continuous phase including metal and slag, is calculated based on the volume of fluid (VOF) method, and the trajectory of inclusions is tracked with the discrete phase model (DPM). The vibrating electrode is simulated by the user-defined function and dynamic mesh. The results show that when the electrode vibration frequency is 0.25 Hz or 1 Hz, the inclusions will gather on one side of the slag layer. When it increases from 0.25 Hz to 1 Hz, the removal ratio of 10 μm and 50 μm inclusions increases by 5% and 4.1%, respectively. When the current increases from 1200 A to 1800 A, the flow following property of inclusions in the slag layer becomes worse. The removal ratio of inclusions reaches the maximum value of 92% with the current of 1500 A. The thickness of slag layer mainly affects the position of inclusions entering the liquid-metal pool. As the slag layer thickens, the inclusions removal ratio increases gradually from 82.73% to 85.91%. As the filling ratio increases, the flow following property of inclusions in the slag layer is enhanced. The removal ratio of 10 μm inclusions increases from 94.82% to 97%. However, for inclusions with a diameter of 50 μm, the maximum removal ratio is 96.04% with a filling ratio of 0.46. The distribution of 50 μm inclusions is significantly different, while the distribution of 10μm inclusions is almost similar. Because of the influence of a vibrating electrode, 10 μm Al2O3 and MnO have a similar removal ratios of 81.33% and 82.81%, respectively.


2021 ◽  
pp. 237-249
Author(s):  
Chunli Tang ◽  
Yueyi Hu ◽  
Tao Zhu ◽  
Limin Wang ◽  
Yanhua Liu ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1375
Author(s):  
Alexander Vakhrushev ◽  
Abdellah Kharicha ◽  
Menghuai Wu ◽  
Andreas Ludwig ◽  
Yong Tang ◽  
...  

Continuous casting (CC) is one of the most important processes of steel production; it features a high production rate and close to the net shape. The quality improvement of final CC products is an important goal of scientific research. One of the defining issues of this goal is the stability of the casting process. The clogging of submerged entry nozzles (SENs) typically results in asymmetric mold flow, uneven solidification, meniscus fluctuations, and possible slag entrapment. Analyses of retained SENs have evidenced the solidification of entrapped melt inside clog material. The experimental study of these phenomena has significant difficulties that make numerical simulation a perfect investigation tool. In the present study, verified 2D simulations were performed with an advanced multi-material model based on a newly presented single mesh approach for the liquid and solid regions. Implemented as an in-house code using the OpenFOAM finite volume method libraries, it aggregated the liquid melt flow, solidification of the steel, and heat transfer through the refractory SENs, copper mold plates, and the slag layer, including its convection. The introduced novel technique dynamically couples the momentum at the steel/slag interface without complex multi-phase interface tracking. The following scenarios were studied: (i) SEN with proper fiber insulation, (ii) partial damage of SEN insulation, and (iii) complete damage of SEN insulation. A uniform 12 mm clog layer with 45% entrapped liquid steel was additionally considered. The simulations showed that parasitic solidification occurred inside an SEN bore with partially or completely absent insulation. SEN clogging was found to promote the solidification of the entrapped melt; without SEN insulation, it could overgrow the clogged region. The jet flow was shown to be accelerated due to the combined effect of the clogging and parasitic solidification; simultaneously, the superheat transport was impaired inside the mold cavity.


Sign in / Sign up

Export Citation Format

Share Document