Relationship between prediction skill of surface winds in average of weeks 1 to 4 and interannual variability over the Western Pacific and Indian Ocean

Author(s):  
Ravi P. Shukla ◽  
J. L. Kinter

AbstractThis study examines the possible relationship between predictions of weekly and biweekly averages of 10m winds at 3 weeks lead-time and interannual variability over Western Pacific and Indian Ocean (WP-IO) using Climate Forecast System version 2 (CFSv2) reforecasts for period 1979-2008. There is large temporal correlation between forecasts and reanalyses for zonal, meridional and total wind magnitudes at 10m over most of WP-IO for average of weeks 1 and 2 (W1 and W2) in reforecasts initialized in January (JIR) and May (MIR). The model has some correlations that exceed 95% confidence in some portions of WP-IO in week 3 (W3) but no skill in week 4 (W4) over most of the region. Model depicts prediction skill in 14-day average of weeks 3-4 (W3-4) over portions of WP-IO, similar to level of skill in W3. The amplitude of interannual variability (IAV) for 10m-winds in W1 of JIR and MIR is close to that in reanalyses. As lead-time increases, amplitude of IAV of 10m-winds gradually decreases over WP-IO in reforecasts; in contrast to behavior in reanalyses. The amplitude of IAV of predicted 10m-winds in W3-4 over WP-IO is equivalent to that in W3 and W4 in reforecasts. In contrast, the amplitude of IAV in W3-4 in January and May of reanalysis is much smaller than IAV of W3 and W4. Therefore, one of the possible causes for prediction skill in W3-4 over sub-regions of WP-IO is due to reduction of IAV bias in W3-4 in comparison to IAV bias in W3 and W4.

2014 ◽  
Vol 27 (4) ◽  
pp. 1679-1697 ◽  
Author(s):  
Fengfei Song ◽  
Tianjun Zhou

Abstract The climatology and interannual variability of East Asian summer monsoon (EASM) are investigated by using 13 atmospheric general circulation models (AGCMs) from phase 3 of the Coupled Model Intercomparison Project (CMIP3) and 19 AGCMs from CMIP5. The mean low-level monsoon circulation is reasonably reproduced in the multimodel ensemble mean (MME) of CMIP3 and CMIP5 AGCMs, except for a northward shift of the western Pacific subtropical high. However, the monsoon rainband known as mei-yu/baiu/changma (28°–38°N, 105°–150°E) is poorly simulated, although a significant improvement is seen from CMIP3 to CMIP5. The interannual EASM pattern is obtained by regressing the precipitation and 850-hPa wind on the observed EASM index. The observed dipole rainfall pattern is partly reproduced in CMIP3 and CMIP5 MME but with two deficiencies: weaker magnitude and southward shift of the dipole rainfall pattern. These deficiencies are closely related to the weaker and southward shift of the western Pacific anticyclone (WPAC). The simulation skill of the interannual EASM pattern has been significantly improved from CMIP3 to CMIP5 MME accompanied by the enhanced dipole rainfall pattern and WPAC. Analyses demonstrate that the tropical eastern Indian Ocean (IO) rainfall response to local warm SST anomalies and the associated Kelvin wave response over the Indo–western Pacific region are important to maintain the WPAC. A successful reproduction of interannual EASM pattern depends highly on the IO–WPAC teleconnection. The significant improvement in the interannual EASM pattern from CMIP3 to CMIP5 MME is also due to a better reproduction of this teleconnection in CMIP5 models.


2016 ◽  
Vol 31 (6) ◽  
pp. 1733-1751 ◽  
Author(s):  
Ravi P. Shukla ◽  
James L. Kinter

Abstract The bias and skill of multi-week predictions of significant wave height (SWH) in the western Pacific and Indian Ocean (WP–IO) region are investigated. The WaveWatch III (WW3) model is forced with daily 10-m winds from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), retrospective forecasts (CFSR). Reforecasts using January and May initial conditions for the period 1999–2009 are considered. The main features of the climatological mean 10-m winds in weeks 1–4 are well captured by CFSv2, although the magnitude of the bias increases with lead time over much of the region in both the January and May cases. The CFSv2–WW3 system similarly captures the magnitude and spatial structure of SWH in weeks 1–4 well in both cases; however, the magnitude of the positive biases increases with lead time over the Southern Ocean (SO), the South China Sea, and the northwestern Pacific region in the January cases, and over SO in the May cases. The magnitude of the SWH variability grows weaker with lead time over SO, which may be related to the weaker interannual variability of 10-m winds in weeks 1–4 over S0 in CFSR. During the first two forecast weeks, the temporal anomaly correlation skill of SWH is significantly higher than it is during weeks 3 and 4 in the WP–IO region. Based on a categorical forecast verification, the CFSv2–WW3 can predict rare events at these lead times.


2011 ◽  
Vol 24 (2) ◽  
pp. 509-521 ◽  
Author(s):  
Ruifen Zhan ◽  
Yuqing Wang ◽  
Xiaotu Lei

Abstract This study attempts to understand contributions of ENSO and the boreal summer sea surface temperature anomaly (SSTA) in the East Indian Ocean (EIO) to the interannual variability of tropical cyclone (TC) frequency over the western North Pacific (WNP) and the involved physical mechanisms. The results show that both ENSO and EIO SSTA have a large control on the WNP TC genesis frequency, but their effects are significantly different. ENSO remarkably affects the east–west shift of the mean genesis location and accordingly contributes to the intense TC activity. The EIO SSTA affects the TC genesis in the entire genesis region over the WNP and largely determines the numbers of both the total and weak TCs. ENSO modulates the large-scale atmospheric circulation and barotropic energy conversion over the WNP, contributing to changes in both the TC genesis location and the frequency of intense TCs. The EIO SSTA significantly affects both the western Pacific summer monsoon and the equatorial Kelvin wave activity over the western Pacific, two major large-scale dynamical controls of TC genesis over the WNP. In general the warm (cold) EIO SSTA suppresses (promotes) the TC genesis over the WNP. Therefore, a better understanding of the combined contributions of ENSO and EIO SSTA could help improve the seasonal prediction of the WNP TC activity.


Atmosphere ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 849
Author(s):  
Hyun-Ju Lee ◽  
Emilia-Kyung Jin

The global impact of the tropical Indian Ocean and the Western Pacific (IOWP) is expected to increase in the future because this area has been continuously warming due to global warming; however, the impact of the IOWP forcing on West Antarctica has not been clearly revealed. Recently, ice loss in West Antarctica has been accelerated due to the basal melting of ice shelves. This study examines the characteristics and formation mechanisms of the teleconnection between the IOWP and West Antarctica for each season using the Rossby wave theory. To explicitly understand the role of the background flow in the teleconnection process, we conduct linear baroclinic model (LBM) simulations in which the background flow is initialized differently depending on the season. During JJA/SON, the barotropic Rossby wave generated by the IOWP forcing propagates into the Southern Hemisphere through the climatological northerly wind and arrives in West Antarctica; meanwhile, during DJF/MAM, the wave can hardly penetrate the tropical region. This indicates that during the Austral winter and spring, the IOWP forcing and IOWP-region variabilities such as the Indian Ocean Dipole (IOD) and Indian Ocean Basin (IOB) modes should paid more attention to in order to investigate the ice change in West Antarctica.


2018 ◽  
Vol 18 (18) ◽  
pp. 13547-13579 ◽  
Author(s):  
Zachary D. Lawrence ◽  
Gloria L. Manney ◽  
Krzysztof Wargan

Abstract. We compare herein polar processing diagnostics derived from the four most recent “full-input” reanalysis datasets: the National Centers for Environmental Prediction Climate Forecast System Reanalysis/Climate Forecast System, version 2 (CFSR/CFSv2), the European Centre for Medium-Range Weather Forecasts Interim (ERA-Interim) reanalysis, the Japanese Meteorological Agency's 55-year (JRA-55) reanalysis, and the National Aeronautics and Space Administration (NASA) Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2). We focus on diagnostics based on temperatures and potential vorticity (PV) in the lower-to-middle stratosphere that are related to formation of polar stratospheric clouds (PSCs), chlorine activation, and the strength, size, and longevity of the stratospheric polar vortex. Polar minimum temperatures (Tmin) and the area of regions having temperatures below PSC formation thresholds (APSC) show large persistent differences between the reanalyses, especially in the Southern Hemisphere (SH), for years prior to 1999. Average absolute differences of the reanalyses from the reanalysis ensemble mean (REM) in Tmin are as large as 3 K at some levels in the SH (1.5 K in the Northern Hemisphere – NH), and absolute differences of reanalysis APSC from the REM up to 1.5 % of a hemisphere (0.75 % of a hemisphere in the NH). After 1999, the reanalyses converge toward better agreement in both hemispheres, dramatically so in the SH: average Tmin differences from the REM are generally less than 1 K in both hemispheres, and average APSC differences less than 0.3 % of a hemisphere. The comparisons of diagnostics based on isentropic PV for assessing polar vortex characteristics, including maximum PV gradients (MPVGs) and the area of the vortex in sunlight (or sunlit vortex area, SVA), show more complex behavior: SH MPVGs showed convergence toward better agreement with the REM after 1999, while NH MPVGs differences remained largely constant over time; differences in SVA remained relatively constant in both hemispheres. While the average differences from the REM are generally small for these vortex diagnostics, understanding such differences among the reanalyses is complicated by the need to use different methods to obtain vertically resolved PV for the different reanalyses. We also evaluated other winter season summary diagnostics, including the winter mean volume of air below PSC thresholds, and vortex decay dates. For the volume of air below PSC thresholds, the reanalyses generally agree best in the SH, where relatively small interannual variability has led to many winter seasons with similar polar processing potential and duration, and thus low sensitivity to differences in meteorological conditions among the reanalyses. In contrast, the large interannual variability of NH winters has given rise to many seasons with marginal conditions that are more sensitive to reanalysis differences. For vortex decay dates, larger differences are seen in the SH than in the NH; in general, the differences in decay dates among the reanalyses follow from persistent differences in their vortex areas. Our results indicate that the transition from the reanalyses assimilating Tiros Operational Vertical Sounder (TOVS) data to advanced TOVS and other data around 1998–2000 resulted in a profound improvement in the agreement of the temperature diagnostics presented (especially in the SH) and to a lesser extent the agreement of the vortex diagnostics. We present several recommendations for using reanalyses in polar processing studies, particularly related to the sensitivity to changes in data inputs and assimilation. Because of these sensitivities, we urge great caution for studies aiming to assess trends derived from reanalysis temperatures. We also argue that one of the best ways to assess the sensitivity of scientific results on polar processing is to use multiple reanalysis datasets.


2012 ◽  
Vol 140 (12) ◽  
pp. 3867-3884 ◽  
Author(s):  
Li Shi ◽  
Harry H. Hendon ◽  
Oscar Alves ◽  
Jing-Jia Luo ◽  
Magdalena Balmaseda ◽  
...  

Abstract In light of the growing recognition of the role of surface temperature variations in the Indian Ocean for driving global climate variability, the predictive skill of the sea surface temperature (SST) anomalies associated with the Indian Ocean dipole (IOD) is assessed using ensemble seasonal forecasts from a selection of contemporary coupled climate models that are routinely used to make seasonal climate predictions. The authors assess predictions from successive versions of the Australian Bureau of Meteorology Predictive Ocean–Atmosphere Model for Australia (POAMA 15b and 24), successive versions of the NCEP Climate Forecast System (CFSv1 and CFSv2), the ECMWF seasonal forecast System 3 (ECSys3), and the Frontier Research Centre for Global Change system (SINTEX-F) using seasonal hindcasts initialized each month from January 1982 to December 2006. The lead time for skillful prediction of SST in the western Indian Ocean is found to be about 5–6 months while in the eastern Indian Ocean it is only 3–4 months when all start months are considered. For the IOD events, which have maximum amplitude in the September–November (SON) season, skillful prediction is also limited to a lead time of about one season, although skillful prediction of large IOD events can be longer than this, perhaps up to about two seasons. However, the tendency for the models to overpredict the occurrence of large events limits the confidence of the predictions of these large events. Some common model errors, including a poor representation of the relationship between El Niño and the IOD, are identified indicating that the upper limit of predictive skill of the IOD has not been achieved.


2013 ◽  
Vol 42 (7-8) ◽  
pp. 1925-1947 ◽  
Author(s):  
J. S. Chowdary ◽  
H. S. Chaudhari ◽  
C. Gnanaseelan ◽  
Anant Parekh ◽  
A. Suryachandra Rao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document