scholarly journals Contributions of ENSO and East Indian Ocean SSTA to the Interannual Variability of Northwest Pacific Tropical Cyclone Frequency*

2011 ◽  
Vol 24 (2) ◽  
pp. 509-521 ◽  
Author(s):  
Ruifen Zhan ◽  
Yuqing Wang ◽  
Xiaotu Lei

Abstract This study attempts to understand contributions of ENSO and the boreal summer sea surface temperature anomaly (SSTA) in the East Indian Ocean (EIO) to the interannual variability of tropical cyclone (TC) frequency over the western North Pacific (WNP) and the involved physical mechanisms. The results show that both ENSO and EIO SSTA have a large control on the WNP TC genesis frequency, but their effects are significantly different. ENSO remarkably affects the east–west shift of the mean genesis location and accordingly contributes to the intense TC activity. The EIO SSTA affects the TC genesis in the entire genesis region over the WNP and largely determines the numbers of both the total and weak TCs. ENSO modulates the large-scale atmospheric circulation and barotropic energy conversion over the WNP, contributing to changes in both the TC genesis location and the frequency of intense TCs. The EIO SSTA significantly affects both the western Pacific summer monsoon and the equatorial Kelvin wave activity over the western Pacific, two major large-scale dynamical controls of TC genesis over the WNP. In general the warm (cold) EIO SSTA suppresses (promotes) the TC genesis over the WNP. Therefore, a better understanding of the combined contributions of ENSO and EIO SSTA could help improve the seasonal prediction of the WNP TC activity.

2011 ◽  
Vol 24 (23) ◽  
pp. 6227-6242 ◽  
Author(s):  
Ruifen Zhan ◽  
Yuqing Wang ◽  
Chun-Chieh Wu

Abstract The impact of the sea surface temperature anomaly (SSTA) in the East Indian Ocean (EIO) on the tropical cyclone (TC) frequency over the western North Pacific (WNP) and the involved physical mechanisms are examined using the International Pacific Research Center (IPRC) Regional Atmospheric Model (iRAM) driven by the reanalysis and the observed SSTs. The model reproduces generally quite realistic climatic features of the WNP TC activity, including the interannual variability of the WNP TC genesis frequency, the geographical distributions of TC genesis and frequency of occurrence. In particular, the model reproduces the observed statistical (negatively correlated) relationship between the WNP TC frequency and the EIO SSTA, as recently studied by Zhan et al. The experiments with artificially imposed SSTA in the EIO in the year 2004 with normal EIO SST and WNP TC activity confirm that the EIO SSTA does affect the TC genesis frequency in the entire genesis region over the WNP by significantly modulating both the western Pacific summer monsoon and the equatorial Kelvin wave activity over the western Pacific, two major large-scale dynamical controls of TC genesis over the WNP. Additional sensitivity experiments are performed for two extreme years: one (1994) with the highest and one (1998) with the lowest TC annual frequencies in the studied period. The results reveal that after the EIO SSTAs in the two extreme years are removed, the TC frequency in 1998 is close to the climatological mean, while the excessive TCs in 1994 are still simulated. The model results suggest that the warm EIO might be a major factor contributing to the unusually few TCs formed over the WNP in 1998, but the cold EIO seemed to contribute little to the excessive WNP TCs in 1994.


2011 ◽  
Vol 24 (12) ◽  
pp. 2963-2982 ◽  
Author(s):  
Andrea Alessandri ◽  
Andrea Borrelli ◽  
Silvio Gualdi ◽  
Enrico Scoccimarro ◽  
Simona Masina

Abstract This study investigates the predictability of tropical cyclone (TC) seasonal count anomalies using the Centro Euro-Mediterraneo per i Cambiamenti Climatici–Istituto Nazionale di Geofisica e Vulcanologia (CMCC-INGV) Seasonal Prediction System (SPS). To this aim, nine-member ensemble forecasts for the period 1992–2001 for two starting dates per year were performed. The skill in reproducing the observed TC counts has been evaluated after the application of a TC location and tracking detection method to the retrospective forecasts. The SPS displays good skill in predicting the observed TC count anomalies, particularly over the tropical Pacific and Atlantic Oceans. The simulated TC activity exhibits realistic geographical distribution and interannual variability, thus indicating that the model is able to reproduce the major basic mechanisms that link the TCs’ occurrence with the large-scale circulation. TC count anomalies prediction has been found to be sensitive to the subsurface assimilation in the ocean for initialization. Comparing the results with control simulations performed without assimilated initial conditions, the results indicate that the assimilation significantly improves the prediction of the TC count anomalies over the eastern North Pacific Ocean (ENP) and northern Indian Ocean (NI) during boreal summer. During the austral counterpart, significant progresses over the area surrounding Australia (AUS) and in terms of the probabilistic quality of the predictions also over the southern Indian Ocean (SI) were evidenced. The analysis shows that the improvement in the prediction of anomalous TC counts follows the enhancement in forecasting daily anomalies in sea surface temperature due to subsurface ocean initialization. Furthermore, the skill changes appear to be in part related to forecast differences in convective available potential energy (CAPE) over the ENP and the North Atlantic Ocean (ATL), in wind shear over the NI, and in both CAPE and wind shear over the SI.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1049
Author(s):  
Xin Li ◽  
Ming Yin ◽  
Xiong Chen ◽  
Minghao Yang ◽  
Fei Xia ◽  
...  

Based on the observation and reanalysis data, the relationship between the Madden–Julian Oscillation (MJO) over the Maritime Continent (MC) and the tropical Pacific–Indian Ocean associated mode was analyzed. The results showed that the MJO over the MC region (95°–150° E, 10° S–10° N) (referred to as the MC–MJO) possesses prominent interannual and interdecadal variations and seasonally “phase-locked” features. MC–MJO is strongest in the boreal winter and weakest in the boreal summer. Winter MC–MJO kinetic energy variation has significant relationships with the El Niño–Southern Oscillation (ENSO) in winter and the Indian Ocean Dipole (IOD) in autumn, but it correlates better with the tropical Pacific–Indian Ocean associated mode (PIOAM). The correlation coefficient between the winter MC–MJO kinetic energy index and the autumn PIOAM index is as high as −0.5. This means that when the positive (negative) autumn PIOAM anomaly strengthens, the MJO kinetic energy over the winter MC region weakens (strengthens). However, the correlation between the MC–MJO convection and PIOAM in winter is significantly weaker. The propagation of MJO over the Maritime Continent differs significantly in the contrast phases of PIOAM. During the positive phase of the PIOAM, the eastward propagation of the winter MJO kinetic energy always fails to move across the MC region and cannot enter the western Pacific. However, during the negative phase of the PIOAM, the anomalies of MJO kinetic energy over the MC is not significantly weakened, and MJO can propagate farther eastward and enter the western Pacific. It should be noted that MJO convection is more likely to extend to the western Pacific in the positive phases of PIOAM than in the negative phases. This is significant different with the propagation of the MJO kinetic energy.


2013 ◽  
Vol 141 (2) ◽  
pp. 690-706 ◽  
Author(s):  
Masaki Katsumata ◽  
Hiroyuki Yamada ◽  
Hisayuki Kubota ◽  
Qoosaku Moteki ◽  
Ryuichi Shirooka

Abstract This report describes the in situ observed evolution of the atmospheric profile during an event of the boreal summer intraseasonal variation (BSISV) in the tropical western Pacific Ocean. The convectively active region of the BSISV proceeded northward over the sounding and radar network. Over the array, the situation changed from a convectively inactive period to an active period. Inspection of the sounding data revealed the gradual moistening of the lower troposphere during the convectively inactive period. The sounding-derived heat and moisture budget analyses indicated that both the convective- and large-scale processes caused moistening of the lower and middle troposphere where the radar echo tops were observed most frequently. This study is the first to identify such a “preconditioning” process for the BSISV in the western Pacific using detailed in situ observational data. During the preconditioning, an increase in CAPE was observed, as in previous studies of the MJO. An increase of moisture in the boundary layer was responsible for the increase of CAPE. The large-scale horizontal convergence in the boundary layer may be a key factor to moisten the boundary layer through the convective-scale processes, as well as through the large-scale processes to moisten the lower and middle troposphere.


2014 ◽  
Vol 76 (1) ◽  
pp. 283-301 ◽  
Author(s):  
Ki-Seon Choi ◽  
Sangwook Park ◽  
Ki-Ho Chang ◽  
Jong-Ho Lee

Author(s):  
Ravi P. Shukla ◽  
J. L. Kinter

AbstractThis study examines the possible relationship between predictions of weekly and biweekly averages of 10m winds at 3 weeks lead-time and interannual variability over Western Pacific and Indian Ocean (WP-IO) using Climate Forecast System version 2 (CFSv2) reforecasts for period 1979-2008. There is large temporal correlation between forecasts and reanalyses for zonal, meridional and total wind magnitudes at 10m over most of WP-IO for average of weeks 1 and 2 (W1 and W2) in reforecasts initialized in January (JIR) and May (MIR). The model has some correlations that exceed 95% confidence in some portions of WP-IO in week 3 (W3) but no skill in week 4 (W4) over most of the region. Model depicts prediction skill in 14-day average of weeks 3-4 (W3-4) over portions of WP-IO, similar to level of skill in W3. The amplitude of interannual variability (IAV) for 10m-winds in W1 of JIR and MIR is close to that in reanalyses. As lead-time increases, amplitude of IAV of 10m-winds gradually decreases over WP-IO in reforecasts; in contrast to behavior in reanalyses. The amplitude of IAV of predicted 10m-winds in W3-4 over WP-IO is equivalent to that in W3 and W4 in reforecasts. In contrast, the amplitude of IAV in W3-4 in January and May of reanalysis is much smaller than IAV of W3 and W4. Therefore, one of the possible causes for prediction skill in W3-4 over sub-regions of WP-IO is due to reduction of IAV bias in W3-4 in comparison to IAV bias in W3 and W4.


2018 ◽  
Vol 31 (18) ◽  
pp. 7549-7564 ◽  
Author(s):  
Tamaki Suematsu ◽  
Hiroaki Miura

An environment favorable for the development of the Madden–Julian oscillation (MJO) was investigated by classifying MJO-like atmospheric patterns as MJO and regionally confined convective (RCC) events. Comparison of MJO and RCC events showed that even when preceded by a major convective suppression event, convective events did not develop into an MJO when large-scale buildup of moist static energy (MSE) was inhibited. The difference in the MSE accumulation between MJO and RCC is related to the contrasting low-frequency basic-state sea surface temperature (SST) pattern; the MJO and RCC events were associated with anomalously warm and cold low-frequency SSTs prevailing over the western to central Pacific, respectively. Differences in the SST anomaly field were absent from the intraseasonal frequency range of 20–60 days. The basic-state SST pattern associated with the MJO was characterized by a positive zonal SST gradient from the Indian Ocean to the western Pacific, which provided a long-standing condition that allowed for sufficient buildup of MSE across the Indian Ocean to the western Pacific via large-scale low-level convergence over intraseasonal and longer time scales. The results of this study suggest the importance of such a basic-state SST, with a long-lasting positive zonal SST gradient, for enhancing convection over a longer than intraseasonal time scale in realizing a complete MJO life cycle.


2014 ◽  
Vol 27 (23) ◽  
pp. 8724-8739 ◽  
Author(s):  
Ruifen Zhan ◽  
Yuqing Wang ◽  
Li Tao

Abstract A recent finding is the significant impact of the sea surface temperature anomaly (SSTA) over the east Indian Ocean (EIO) on the genesis frequency of tropical cyclones (TCs) over the western North Pacific (WNP). In this study it is shown that such an impact is significant only after the late 1970s. The results based on both data analysis and numerical model experiments demonstrate that prior to the late 1970s the EIO SSTA is positively correlated with the equatorial central Pacific SSTA and the latter produces an opposite atmospheric circulation response over the WNP to the former. As a result, the impact of the EIO SSTA on the TC genesis over the WNP is largely suppressed by the latter. After the late 1970s, the area coverage of the EIO SSTA is expanding. This considerably enhances the large-scale circulation response over the WNP to the EIO SSTA and significantly intensifies the impact of the EIO SSTA on TC genesis frequency over the WNP. The results from this study have great implications for seasonal prediction of TC activity over the WNP.


2007 ◽  
Vol 20 (13) ◽  
pp. 3056-3082 ◽  
Author(s):  
Jean Philippe Duvel ◽  
Jérôme Vialard

Abstract Since the ISV of the convection is an intermittent phenomenon, the local mode analysis (LMA) technique is used to detect only the ensemble of intraseasonal events that are well organized at large scale. The LMA technique is further developed in this paper in order to perform multivariate analysis given patterns of SST and surface wind perturbations associated specifically with these intraseasonal events. During boreal winter, the basin-scale eastward propagation of the convective perturbation is present only over the Indian Ocean Basin. The intraseasonal SST response to convective perturbations is large and recurrent over thin mixed layer regions located north of Australia and in the Indian Ocean between 5° and 10°S. By contrast, there is little SST response in the western Pacific basin and no clear eastward propagation of the convective perturbation. During boreal summer, the SST response is large over regions with thin mixed layers located north of the Bay of Bengal, in the Arabian Sea, and in the China Sea. The northeastward propagation of the convective perturbation over the Bay of Bengal is associated with a standing oscillation of the SST and the surface wind between the equator and the northern part of the bay. In fact, many intraseasonal events mostly concern a single basin, suggesting that the interbasin organization is not a necessary condition for the existence of coupled intraseasonal perturbations of the convection. The perturbation of the surface wind tends to be larger to the west of the large-scale convective perturbation (like for a Gill-type dynamical response). For eastward propagating perturbations, the cooling due to the reinforcement of the wind (i.e., surface turbulent heat flux) thus generally lags the radiative cooling due to the reduction of the surface solar flux by the convective cloudiness. This large-scale Gill-type response of the surface wind also cools the surface to the west of the basin (northwest Arabian Sea and northwest Pacific Ocean), even if the convection is locally weak. An intriguing result is a frequently occurring small delay between the maximum surface wind and the minimum SST. Different explanations are invoked, like a rapid surface cooling due to the vanishing of an ocean warm layer (diurnal surface warming due to solar radiation in low wind conditions) as soon as the wind increases.


Sign in / Sign up

Export Citation Format

Share Document