scholarly journals Accuracy of Atlantic and Eastern North Pacific Tropical Cyclone Intensity Forecast Guidance

2007 ◽  
Vol 22 (4) ◽  
pp. 747-762 ◽  
Author(s):  
Russell L. Elsberry ◽  
Tara D. B. Lambert ◽  
Mark A. Boothe

Abstract Five statistical and dynamical tropical cyclone intensity guidance techniques available at the National Hurricane Center (NHC) during the 2003 and 2004 Atlantic and eastern North Pacific seasons were evaluated within three intensity phases: (I) formation; (II) early intensification, with a subcategory (IIa) of a decay and reintensification cycle; and (III) decay. In phase I in the Atlantic, the various techniques tended to predict that a tropical storm would form from six tropical depressions that did not develop further, and thus the tendency was for false alarms in these cases. For the other 24 depressions that did become tropical storms, the statistical–dynamical techniques, statistical hurricane prediction scheme (SHIPS) and decay SHIPS (DSHIPS), have some skill relative to the 5-day statistical hurricane intensity forecast climatology and persistence technique, but they also tend to intensify all depressions and thus are prone to false alarms. In phase II, the statistical–dynamical models SHIPS and DSHIPS do not predict the rapid intensification cases (≥30 kt in 24 h) 48 h in advance. Although the dynamical Geophysical Fluid Dynamics Interpolated model does predict rapid intensification, many of these cases are at the incorrect times with many false alarms. The best performances in forecasting at least 24 h in advance the 21 decay and reintensification cycles in the Atlantic were the three forecasts by the dynamical Geophysical Fluid Dynamics Model-Navy (interpolated) model. Whereas DSHIPS was the best technique in the Atlantic during the decay phase III, none of the techniques excelled in the eastern North Pacific. All techniques tend to decay the tropical cyclones in both basins too slowly, except that DSHIPS performed well (12 of 18) during rapid decay events in the Atlantic. This evaluation indicates where NHC forecasters have deficient guidance and thus where research is necessary for improving intensity forecasts.

2015 ◽  
Vol 143 (11) ◽  
pp. 4476-4492 ◽  
Author(s):  
George R. Alvey III ◽  
Jonathan Zawislak ◽  
Edward Zipser

Abstract Using a 15-yr (1998–2012) multiplatform dataset of passive microwave satellite data [tropical cyclone–passive microwave (TC-PMW)] for Atlantic and east Pacific storms, this study examines the relative importance of various precipitation properties, specifically convective intensity, symmetry, and area, to the spectrum of intensity changes observed in tropical cyclones. Analyses are presented not only spatially in shear-relative quadrants around the center, but also every 6 h during a 42-h period encompassing 18 h prior to onset of intensification to 24 h after. Compared to those with slower intensification rates, storms with higher intensification rates (including rapid intensification) have more symmetric distributions of precipitation prior to onset of intensification, as well as a greater overall areal coverage of precipitation. The rate of symmetrization prior to, and during, intensification increases with increasing intensity change as rapidly intensifying storms are more symmetric than slowly intensifying storms. While results also clearly show important contributions from strong convection, it is concluded that intensification is more closely related to the evolution of the areal, radial, and symmetric distribution of precipitation that is not necessarily intense.


2019 ◽  
Vol 46 (15) ◽  
pp. 9145-9153 ◽  
Author(s):  
Xin Zhou ◽  
Zhonghui Liu ◽  
Qing Yan ◽  
Xiaolin Zhang ◽  
Liang Yi ◽  
...  

2014 ◽  
Vol 142 (8) ◽  
pp. 2860-2878 ◽  
Author(s):  
Ryan D. Torn

Abstract The value of assimilating targeted dropwindsonde observations meant to improve tropical cyclone intensity forecasts is evaluated using data collected during the Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) field project and a cycling ensemble Kalman filter. For each of the four initialization times studied, four different sets of Weather Research and Forecasting Model (WRF) ensemble forecasts are produced: one without any dropwindsonde data, one with all dropwindsonde data assimilated, one where a small subset of “targeted” dropwindsondes are identified using the ensemble-based sensitivity method, and a set of randomly selected dropwindsondes. For all four cases, the assimilation of dropwindsondes leads to an improved intensity forecast, with the targeted dropwindsonde experiment recovering at least 80% of the difference between the experiment where all dropwindsondes and no dropwindsondes are assimilated. By contrast, assimilating randomly selected dropwindsondes leads to a smaller impact in three of the four cases. In general, zonal and meridional wind observations at or below 700 hPa have the largest impact on the forecast due to the large sensitivity of the intensity forecast to the horizontal wind components at these levels and relatively large ensemble standard deviation relative to the assumed observation errors.


2019 ◽  
Vol 46 (15) ◽  
pp. 8960-8968 ◽  
Author(s):  
Woojeong Lee ◽  
Sung‐Hun Kim ◽  
Pao‐Shin Chu ◽  
Il‐Ju Moon ◽  
Alexander V. Soloviev

2018 ◽  
Vol 31 (3) ◽  
pp. 1015-1028 ◽  
Author(s):  
Jia Liang ◽  
Liguang Wu ◽  
Guojun Gu

Abstract As one major source of forecasting errors in tropical cyclone intensity, rapid weakening of tropical cyclones [an intensity reduction of 20 kt (1 kt = 0.51 m s−1) or more over a 24-h period] over the tropical open ocean can result from the interaction between tropical cyclones and monsoon gyres. This study aims to examine rapid weakening events occurring in monsoon gyres in the tropical western North Pacific (WNP) basin during May–October 2000–14. Although less than one-third of rapid weakening events happened in the tropical WNP basin south of 25°N, more than 40% of them were associated with monsoon gyres. About 85% of rapid weakening events in monsoon gyres occurred in September and October. The rapid weakening events associated with monsoon gyres are usually observed near the center of monsoon gyres when tropical cyclone tracks make a sudden northward turn. The gyres can enlarge the outer size of tropical cyclones and tend to induce prolonged rapid weakening events with an average duration of 33.2 h. Large-scale environmental factors, including sea surface temperature changes, vertical wind shear, and midlevel environmental humidity, are not primary contributors to them, suggesting the possible effect of monsoon gyres on these rapid weakening events by modulating the tropical cyclone structure. This conclusion is conducive to improving operational forecasts of tropical cyclone intensity.


Sign in / Sign up

Export Citation Format

Share Document