Secretory Immunoglobulin a in Oral and Respiratory Passages in Man

1975 ◽  
Vol 84 (20_suppl) ◽  
pp. 1-23 ◽  
Author(s):  
Goro Mogi

Secretory IgA (SIgA) is the predominant immunoglobulin in certain external secretions and may have an important role in immunological mucosal resistance. SIgA differs in chemical and immunological properties from serum IgA. The present study was undertaken to investigate the antigenic relationship between SIgA, free secretory component (FSC) and serum IgA and the localization of SIgA as well as other immunological classes in tissues of oral and respiratory passages by use of immunofluorescence technique. SIgA and FSC were highly purified from human colostrum and rabbit anti-SIgA and anti-SC antisera were prepared. On the basis of antigenic relationships between SIgA, FSC and serum IgA, it was emphasized that individual specific antisera for SC and IgA and/or SIgA should be used in immunochemical or immunohistological investigations for SIgA. The present study failed to detect SC determinants in palatine and lingual tonsils. However, it was evident that cells present in the pharyngeal tonsillar epithelium contain SC determinants. SC molecules may be synthesized in certain secretory cells of mucous membrane and glandular epithelium and the combining of SC with IgA could occur in the cytoplasm of epithelial cells, the intercellular spaces and/or in the lumens of glandular acini and ductules.

1975 ◽  
Vol 84 (3_suppl) ◽  
pp. 2-23 ◽  
Author(s):  
Goro Mogi

Secretory IgA (SIgA) is the predominant immunoglobulin in certain external secretions and may have an important role in immunological mucosal resistance. SIgA differs in chemical and immunological properties from serum IgA. The present study was undertaken to investigate the antigenic relationship between SIgA, free secretory component (FSC) and serum IgA and the localization of SIgA as well as other immunological classes in tissues of oral and respiratory passages by use of immunofluorescence technique. SIgA and FSC were highly purified from human colostrum and rabbit anti-SIgA and anti-SC antisera were prepared. On the basis of antigenic relationships between SIgA, FSC and serum IgA, it was emphasized that individual specific antisera for SC and IgA and/or SIgA should be used in immunochemical or immunohistological investigations for SIgA. The present study failed to detect SC determinants in palatine and lingual tonsils. However, it was evident that cells present in the pharyngeal tonsillar epithelium contain SC determinants. SC molecules may be synthesized in certain secretory cells of mucous membrane and glandular epithelium and the combining of SC with IgA could occur in the cytoplasm of epithelial cells, the intercellular spaces and/or in the lumens of glandular acini and ductules.


2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Yue Li ◽  
Liang Jin ◽  
Tongxin Chen

Immunoglobulin A (IgA) is the most abundant antibody isotype in the mucosal immune system. Structurally, IgA in the mucosal surface is a polymeric structure, while serum IgA is monomeric. Secretory IgA (sIgA) is one of the polymeric IgAs composed of dimeric IgA, J chain, and secretory component (SC). Most of sIgAs were generated by gut and have effects in situ. Besides the function of “immune exclusion,” a nonspecific immune role, recent studies found it also played an important role in the specific immunity and immunoregulation. Thanks to the critical role of sIgA during the mucosal immune system homeostasis between commensal microorganisms and pathogens; it has been an important field exploring the relationship between sIgA and commensal microorganisms.


Author(s):  
Estelle F Chiari ◽  
William Weiss ◽  
Michael R Simon ◽  
Stephan T Kiessig ◽  
Mark Pulse ◽  
...  

Abstract Coadministration of human secretory IgA (sIgA) together with subtherapeutic vancomycin enhanced survival in the Clostridioides difficile infection (CDI) hamster model. Vancomycin (5 or 10 mg/kg × 5 days) plus healthy donor plasma sIgA/monomeric IgA (TID × 21 days) or hyperimmune sIgA/monomeric IgA (BID × 13 days) enhanced survival. Survival was improved compared to vancomycin alone, P = .018 and .039 by log-rank Mantel-Cox, for healthy and hyperimmune sIgA, respectively. Passive immunization with sIgA (recombinant human secretory component plus IgA dimer/polymer from pooled human plasma) can be administered orally and prevents death in a partially treated CDI hamster model.


2000 ◽  
Vol 68 (7) ◽  
pp. 3830-3839 ◽  
Author(s):  
Dörthe Externest ◽  
Barbara Meckelein ◽  
M. Alexander Schmidt ◽  
Andreas Frey

ABSTRACT Monitoring specific secretory immunoglobulin A (IgA) responses in the intestines after mucosal immunization or infection is impeded by the fact that sampling of small intestinal secretions requires invasive methods not feasible for routine diagnostics. Since IgA plasma cells generated after intragastric immunization are known to populate remote mucosal sites as well, secretory IgA responses at other mucosal surfaces may correlate to those in the intestines and could serve as proxy measures for IgA secretion in the gut. To evaluate the practicability of this approach, mice were immunized intragastrically with 0.2, 2, and 20 mg of ovalbumin plus 10 μg of cholera toxin, and the antigen-specific local secretory IgA responses in duodenal, ileal, jejunal, rectal, and vaginal secretions, saliva, urine, and feces, as well as serum IgG and IgA responses were analyzed by enzyme-linked immunosorbent assay. Correlation analysis revealed significant relationships between serum IgG and IgA, urinary IgA, salivary IgA, and secretory IgA in duodenal, jejunal, ileal, and rectal secretions for the 0.2-mg but not for the 20-mg ovalbumin dose. Fecal samples were poor predictors for intestinal antiovalbumin IgA responses, and no correlations could be established for cholera toxin, neither between local anti-cholera toxin levels nor to the antiovalbumin responses. Thus, specific IgA in serum, saliva, or urine can serve as a predictor of the release of specific IgA at intestinal surfaces after intragastric immunization, but the lack of correlations for high ovalbumin doses and for cholera toxin indicates a strong dependency on antigen type and dosage for these relationships.


2021 ◽  
Author(s):  
Haowen Zhang ◽  
Ce Qi ◽  
Yuning Zhao ◽  
Mengyao Lu ◽  
Xinyue Li ◽  
...  

Gestational diabetes mellitus (GDM) may be related to intestinal mucosal damage and inflammation-induced dysbiosis of secretory IgA (SIgA) coated microbiota. SIgA coated L. reuteri can reduce the level of inflammation of GDM in vitro.


2020 ◽  
Author(s):  
Yuxin Wang ◽  
Guopeng Wang ◽  
Yaxin Li ◽  
Hao Shen ◽  
Huarui Chu ◽  
...  

AbstractSecretory Immunoglobulin A (SIgA) is the most abundant antibody at the mucosal surface. SIgA possesses two additional subunits besides IgA: the joining chain (J-chain) and secretory component (SC). SC is the ectodomain of the polymeric immunoglobulin receptor (pIgR), which functions to transport IgA to the mucosa. The underlying mechanism of how the J-chain and pIgR/SC facilitates the assembly and secretion of SIgA remains to be understood. During the infection of Streptococcus pneumoniae, a pneumococcal adhesin SpsA hijacks SIgA and unliganded pIgR/SC to evade host defense and gain entry to human cells. How SpsA specifically targets SIgA and pIgR/SC also remains unclear. Here we report a cryo-electron microscopy structure of the Fc region of human IgA1 (Fcα) in complex with J-chain and SC (Fcα-J-SC), which reveals the organization principle of SIgA. We also present the structure of Fcα-J-SC in complex with SpsA, which uncovers the specific interaction between SpsA and human pIgR/SC. These results advance the molecular understanding of SIgA and shed light on the pathogenesis of S. pneumoniae.


2015 ◽  
Vol 14 (3) ◽  
pp. 1335-1349 ◽  
Author(s):  
Jincui Huang ◽  
Andres Guerrero ◽  
Evan Parker ◽  
John S. Strum ◽  
Jennifer T. Smilowitz ◽  
...  

1983 ◽  
Vol 29 (1) ◽  
pp. 151-153 ◽  
Author(s):  
R Yamamoto ◽  
S Kimura ◽  
S Hattori ◽  
Y Ishiguro ◽  
K Kato

Abstract This enzyme immunoassay for specific measurement of secretory immunoglobulin A concentrations in human serum involves use of a small chromatographic column as a solid-phase. Serum samples are incubated for 2 h with beta-D-galactosidase-labeled antibody to secretory component, then passed through a 0.1-mL Sepharose 4B column containing antibodies to human immunoglobulin A. After the column is washed to remove the unbound label, the buffer in the column is replaced by a solution of o-nitrophenyl-beta-D-galactoside (a beta-D-galactosidase substrate) and incubated at 25 degrees C overnight. The enzyme reaction is stopped by washing the column with sodium carbonate solution, and the absorbance of the eluate is measured at 420 nm. The concentration of secretory immunoglobulin A can be determined with a minimum detectable sensitivity of 3 mg/L, without interference from free immunoglobulin A and secretory component in the same samples.


2001 ◽  
Vol 20 (7) ◽  
pp. 672-678 ◽  
Author(s):  
ROSELICE MARIO FERNANDES ◽  
SOLANGE BARROS CARBONARE ◽  
MAGDA MARIA SALLES CARNEIRO-SAMPAIO ◽  
LUIZ RACHID TRABULSI

1971 ◽  
Vol 133 (5) ◽  
pp. 987-1003 ◽  
Author(s):  
Carolyn S. Pincus ◽  
Michael E. Lamm ◽  
Victor Nussenzweig

The ability of passively administered antibody to suppress the immune response against homologous antigenic determinants while concomitantly enhancing the response against other unrelated determinants of the same antigen molecule has been established in two distinct antigen-antibody systems: (a) guinea pig γ2-immunoglobulin + passive anti-F(ab')2 antibody, where suppression of anti-F(ab')2 antibody synthesis is accompanied by enhancement of the anti-Fc response; and (b) human secretory IgA + passive anti-serum IgA antibody, where suppression of antibody production against the α and L chains accompanies augmentation of the response to the secretory component. The mechanisms of the suppressive and enhancing effects are probably unrelated for the following reasons: (a) Enhancement of the response to certain determinants may be obtained without discernible suppression of the response to the homologous determinants; and (b) the F(ab')2 fragments of passive antibody can mediate immune suppression but were not observed to enhance the response against the unrelated determinants of the same antigen molecule. Also, the timing for achieving maximum suppression or enhancement of antibody formation is not the same; enhancement was obtained only at a later time. Both the enhancement and suppressive effects were obtained with the purified γG fraction of antisera. This finding rules out an exclusive role of γM antibody in the enhancement phenomenon.


Sign in / Sign up

Export Citation Format

Share Document