immunoglobulin receptor
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 51)

H-INDEX

50
(FIVE YEARS 5)

2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Farouk F. Abou Hassan ◽  
Mirna Bou Hamdan ◽  
Khalil El Asmar ◽  
Nada M. Melhem

Combined antiretroviral therapy (cART) increased the life expectancy of people living with HIV (PLHIV) and remarkably reduced the morbidity and mortality associated with HIV infection. However, non-AIDS associated comorbidities including diabetes, hypertension, hyperlipidemia, and cardiovascular diseases (CVD) are increasingly reported among PLHIV receiving cART. Killer cell immunoglobulin receptors (KIRs) expressed on the surface of natural killer (NK) cells have been previously implicated in controlling HIV disease progression. The aim of this study is to investigate the role of KIRs in developing non-AIDS associated comorbidities among PLHIV. Demographic and behavioral data were collected from voluntary participants using a standardized questionnaire. Whole blood samples were collected for KIR genotyping. Hypertension (29.5%) and hyperlipidemia (29.5%) followed by diabetes (23.7%) and CVD (9.7%) were mainly reported among our study participants with higher rate of comorbid conditions observed among participants > 40 years old. The observed KIR frequency (OF) was ≥90% for inhibitory KIR2DL1 and KIR3DL1, activating KIR2DS4 and the pseudogene KIR2DP1 among study participants. We detected significant differences in the expression of KIR3DS4 and KIR3DL1 ( p = 0.038 ) between diabetic and nondiabetic and in the expression of KIR2DL3 between hypertensive and normotensive HIV-infected individuals ( p = 0.047 ). Moreover, KIR2DL1 and KIR2DP1 were associated with significantly reduced odds of having CVD (OR 0.08; 95% CI: 0.01-0.69; p = 0.022 ). Our study suggests the potential role of KIR in predisposition to non-AIDS comorbidities among PLHIV and underscores the need for more studies to further elucidate the role of KIRs in this population.


PEDIATRICS ◽  
2021 ◽  
Author(s):  
Lara Valeri ◽  
Licia Lugli ◽  
Lorenzo Iughetti ◽  
Annarosa Soresina ◽  
Silvia Giliani ◽  
...  

Omenn syndrome (OS) is a rare variant of severe combined immunodeficiency characterized by susceptibility to severe opportunistic infections and peculiar manifestations, such as protein-losing erythroderma, alopecia, hepatosplenomegaly, lymphadenopathies, and severe diarrhea. The typical form of the disease is caused by hypomorphic mutation of the recombination-activating genes (RAG1 and RAG2), which are critical in initiating the molecular processes leading to lymphocyte and immunoglobulin receptor formation. Affected patients lack B cells, whereas autoreactive oligoclonal T cells infiltrate the skin, gut, spleen, and liver. In the absence of hematopoietic stem cell transplantation, patients with OS usually succumb early in life because of opportunistic infections. The incidence of OS is estimated to be <1 per 1 000 000; however, the actual frequency is difficult to ascertain. We report 2 siblings affected by OS due to a homozygous frameshift mutation (NM_000448.3:c.519delT, p.E174Sfs*26) in the RAG1 gene presenting with nonimmune hydrops fetalis (NIHF). To the best of our knowledge, this is the first reported association between OS and NIHF. NIHF specifically refers to the presence of ≥2 abnormal fluid collections in the fetus, without red blood cell alloimmunization. A broad spectrum of pathologies is associated with NIHF; however, in ∼20% of the cases, the primary cause remains unclear. Understanding the etiology of NIHF is essential for guiding clinical management, determining prognosis, and informing parents regarding recurrence risk. Our case contributes to expanding the spectrum of OS presentation and highlights the importance of a complete immunologic and genetic workup in otherwise unexplained cases of NIHF.


Lung ◽  
2021 ◽  
Author(s):  
Alexander Pausder ◽  
Jennifer Fricke ◽  
Klaus Schughart ◽  
Jens Schreiber ◽  
Till Strowig ◽  
...  

Abstract Purpose Transport of secretory immunoglobulin A (SIgA) through the airway epithelial cell barrier into the mucosal lumen by the polymeric immunoglobulin receptor (pIgR) is an important mechanism of respiratory mucosal host defense. Identification of immunomodulating substances that regulate secretory immunity might have therapeutic implications with regard to an improved immune exclusion. Thus, we sought to analyze secretory immunity under homeostatic and immunomodulating conditions in different compartments of the murine upper and lower respiratory tract (URT&LRT). Methods Pigr gene expression in lung, trachea, and nasal-associated lymphoid tissue (NALT) of germ-free mice, specific pathogen-free mice, mice with an undefined microbiome, as well as LPS- and IFN-γ-treated mice was determined by quantitative real-time PCR. IgA levels in bronchoalveolar lavage (BAL), nasal lavage (NAL), and serum were determined by ELISA. LPS- and IFN-γ-treated mice were colonized with Streptococcus pneumoniae and bacterial CFUs were determined in URT and LRT. Results Respiratory Pigr expression and IgA levels were dependent on the degree of exposure to environmental microbial stimuli. While immunostimulation with LPS and IFN-γ differentially impacts respiratory Pigr expression and IgA in URT vs. LRT, only prophylactic IFN-γ treatment reduces nasal colonization with S. pneumoniae. Conclusion Airway-associated secretory immunity can be partly modulated by exposure to microbial ligands and proinflammatory stimuli. Prophylactic IFN-γ-treatment modestly improves antibacterial immunity in the URT, but this does not appear to be mediated by SIgA or pIgR.


2021 ◽  
Vol 22 (19) ◽  
pp. 10466
Author(s):  
Xuxu Fan ◽  
Dihan Zhou ◽  
Bali Zhao ◽  
Huijun Sha ◽  
Mengxue Li ◽  
...  

Polymeric immunoglobulin receptor (pIgR)-mediated polymeric immunoglobulin A (pIgA) transcytosis across mucosal epithelial cells plays an essential role in mucosal immunity. The general trafficking process has been well investigated, yet the elaborate regulatory mechanisms remain enigmatic. We identified a new pIgR interacting protein, the Rab11 effector Rab11-FIP1. Rab11-FIP1 and Rab11-FIP5 knockdown additively impaired pIgA transcytosis in both polarized and incompletely polarized cells. Moreover, Rab11-FIP1 and Rab11-FIP5 knockdown exhibited more significant inhibitory effects on pIgA transcytosis in incompletely polarized cells than in polarized cells. Interestingly, the trafficking process of pIgA in incompletely polarized cells is distinct from that in polarized cells. In incompletely polarized cells, the endocytic pIgR/pIgA was first transported from the basolateral plasma membrane to the vicinity of the centrosome where Rab11-FIP1 and Rab11-FIP5 bound to it, before the Rab11a-positive endosomes containing pIgR/pIgA, Rab11-FIP1 and Rab11-FIP5 were further transported to the apical plasma membrane via Golgi apparatus. During the trafficking process, TRIM21 mediated the K11-linked polyubiquitination of Rab11-FIP1 and the K6-linked polyubiquitination of Rab11-FIP5 to promote their activation and pIgA transcytosis. This study indicates that polyubiquitinated Rab11-FIP1 and Rab11-FIP5 mediated by TRIM21 cooperatively facilitate pIgA transcytosis and provides new insights into the intracellular trafficking process of pIgA in incompletely polarized cells.


Author(s):  
Gina Perrella ◽  
Magdolna Nagy ◽  
Steve P. Watson ◽  
Johan W.M. Heemskerk

The immunoglobulin receptor GPVI (glycoprotein VI) is selectively expressed on megakaryocytes and platelets and is currently recognized as a receptor for not only collagen but also a variety of plasma and vascular proteins, including fibrin, fibrinogen, laminin, fibronectin, and galectin-3. Deficiency of GPVI is protective in mouse models of experimental thrombosis, pulmonary thromboembolism as well as in thromboinflammation, suggesting a role of GPVI in arterial and venous thrombus formation. In humans, platelet GPVI deficiency is associated with a mild bleeding phenotype, whereas a common variant rs1613662 in the GP6 gene is considered a risk factor for venous thromboembolism. However, preclinical studies on the inhibition of GPVI-ligand interactions are focused on arterial thrombotic complications. In this review we discuss the emerging evidence for GPVI in venous thrombus formation and leukocyte-dependent thromboinflammation, extending to venous thromboembolism, pulmonary thromboembolism, and cancer metastasis. We also recapitulate indications for circulating soluble GPVI as a biomarker of thrombosis-related complications. Collectively, we conclude that the current evidence suggests that platelet GPVI is also a suitable cotarget in the prevention of venous thrombosis due to its role in thrombus consolidation and platelet-leukocyte complex formation.


Author(s):  
Mauricio Guzman ◽  
Luke R. Lundborg ◽  
Shaila Yeasmin ◽  
Christopher J. Tyler ◽  
Nadia R. Zgajnar ◽  
...  

AbstractEfficient IgA transcytosis is critical for the maintenance of a homeostatic microbiota. In the canonical model, locally-secreted dimeric (d)IgA reaches the polymeric immunoglobulin receptor (pIgR) on intestinal epithelium via simple diffusion. A role for integrin αE(CD103)β7 during transcytosis has not been described, nor its expression by intestinal B cell lineage cells. We found that αE-deficient (αE−/−) mice have a luminal IgA deficit, despite normal antibody-secreting cells (ASC) recruitment, local IgA production and increased pIgR expression. This deficit was not due to dendritic cell (DC)-derived retinoic acid (RA) nor class-switching defects, as stool from RAG−/− mice reconstituted with αE−/− B cells was also IgA deficient. Flow cytometric, ultrastructural and transcriptional profiling showed that αEβ7-expressing ASC represent an undescribed subset of terminally-differentiated intestinal plasma cells (PC) that establishes direct cell to cell contact with intestinal epithelium. We propose that IgA not only reaches pIgR through diffusion, but that αEβ7+ PC dock with E-cadherin-expressing intestinal epithelium to directly relay IgA for transcytosis into the intestinal lumen.


2021 ◽  
Author(s):  
Alexander Pausder ◽  
Jennifer Fricke ◽  
Klaus Schughart ◽  
Jens Schreiber ◽  
Till Strowig ◽  
...  

Abstract PurposeTransport of secretory immunoglobulin A (sIgA) through the airway epithelial cell barrier into the mucosal lumen by the polymeric immunoglobulin receptor (pIgR) is an important mechanism of respiratory mucosal host defense. Identification of immunomodulating substances that regulate secretory immunity might have therapeutic implications with regard to an improved immune exclusion. Thus, we sought to analyze secretory immunity under homeostatic and immunomodulating conditions in different compartments of the murine upper and lower respiratory tract (URT&LRT). MethodsPigr gene expression in lung, trachea and nasal-associated lymphoid tissue (NALT) of germ-free mice, specific-pathogen-free mice, mice with an undefined microbiome as well as LPS- and IFN-γ-treated mice was determined by quantitative real-time RT-PCR. IgA levels in bronchoalveolar lavage (BAL), nasal lavage (NAL) and serum were determined by ELISA. LPS- and IFN-γ-treated mice were colonized with Streptococcus pneumoniae and bacterial CFUs were determined in URT and LRT. ResultsRespiratory Pigr expression and IgA levels were dependent on the degree of exposure to environmental microbial stimuli. While immunostimulation with LPS and IFN-γ differentially impact respiratory Pigr expression and sIgA in URT vs . LRT, only prophylactic IFN-γ treatment reduces nasal colonization with S. pneumoniae . ConclusionAirway-associated secretory immunity can be partly modulated by exposure to microbial ligands and proinflammatory stimuli. Prophylactic IFN-γ-treatment significantly improves antibacterial immunity in the URT.


2021 ◽  
Vol 108 (Supplement_5) ◽  
Author(s):  
W Asanprakit ◽  
D N Lobo ◽  
O Eremin ◽  
A J Bennett

Abstract Introduction Polymeric immunoglobulin receptor (PIGR) has a major role in mucosal immunity as a transporter of polymeric immunoglobulin across the epithelial cells. PIGR expression increases in various cancers and relates to patient outcomes. Functional roles of PIGR have been explored in several cancers such as hepatocellular, pancreatic and lung cancer. The aim of this study was to determine the effect of PIGR on cellular behaviours and chemo-sensitivity of MCF7 and MDA-MB468 breast cancer cell lines. Method Basal levels of PIGR mRNA and protein expression in MCF7 and MDA-MB468 cells were evaluated by real time quantitative polymerase chain reaction and Western blotting, respectively. MCF7/PIGR and MDA-MB468/PIGR stable cell lines, overexpressing the PIGR gene, were generated using a lentiviral vector with tetracycline dependent induction of expression. Cell viability, cell proliferation and chemo-sensitivity of PIGR transfected cells were evaluated and compared with un-transfected cells to determine the effect of PIGR overexpression on cell phenotype. Result The levels of PIGR mRNA and protein expression were significantly higher in MDA-MB468 cells than in MCF7 cells (380-fold, P < 0.0001). However, the differential expression of PIGR in these two cell lines did not lead to significant differences in chemo-sensitivity. Viral overexpression of PIGR was also not found to change any of the parameters measured in either cell line. Conclusion PIGR per se does not affect cellular behaviours and chemo-sensitivity of these breast cancer cell lines. It may be a marker which works through other factors rather than being a direct contributor of the favourable outcome in patients. Take-home Message PIGR may be a marker of favourable outcome in breast cancer patients which works through other factors rather than being a direct contributor.


Sign in / Sign up

Export Citation Format

Share Document