Quantitative Identification of the Annealing Degree of Apatite Fission Tracks Using Terahertz Time Domain Spectroscopy (THz-TDS)

2018 ◽  
Vol 72 (6) ◽  
pp. 870-878
Author(s):  
Hang Wu ◽  
Shixiang Wu ◽  
Nansheng Qiu ◽  
Jian Chang ◽  
Rima Bao ◽  
...  

Apatite fission-track (AFT) analysis, a widely used low-temperature thermochronology method, can provide details of the hydrocarbon generation history of source rocks for use in hydrocarbon exploration. The AFT method is based on the annealing behavior of fission tracks generated by 238U fission in apatite particles during geological history. Due to the cumbersome experimental steps and high expense, it is imperative to find an efficient and inexpensive technique to determinate the annealing degree of AFT. In this study, on the basis of the ellipsoid configuration of tracks, the track volume fraction model (TVFM) is established and the fission-track volume index is proposed. Furthermore, terahertz time domain spectroscopy (THz-TDS) is used for the first time to identify the variation of the AFT annealing degree of Durango apatite particles heated at 20, 275, 300, 325, 450, and 500 ℃ for 10 h. The THz absorbance of the sample increases with the degree of annealing. In addition, the THz absorption index is exponentially related to annealing temperature and can be used to characterize the fission-track volume index. Terahertz time domain spectroscopy can be an ancillary technique for AFT thermochronological research. More work is urgently needed to extrapolate experimental data to geological conditions.

2011 ◽  
Vol 295-297 ◽  
pp. 1408-1413 ◽  
Author(s):  
Xi Liang Chen ◽  
Xin Chen ◽  
Dang Sheng Li ◽  
Zhi Yong Zhu

The optical properties of composites, formed by filling the high density polyethylene (HDPE) with carbon black (CB), multi-walled carbon nanotubes (MWNTs) and fullerene (C60), respectively, in the frequence region from 0.3 to 2.0 terahertz (THz) were characterized with THz time-domain spectroscopy (THz-TDS). It is found that the optical parameters and the details of their variation with frequence and filler concentration are significantly different for different kinds of carbon materials. The MWNTs filled composites have the biggest absorption coefficient value, refractive index and real conductivity. The C60/HDPE composite shows very little changes in absorption and refractive index compared to that of the HDPE even at a filler-content of 12.3% in volume fraction. These phenomena are related to the special properties of the fillers as well as their particulate structures, such as aspect ratio, particle size, and aggregate structure, etc. The results are analyzed by using Cole-Cole theory of dipole relaxation under the assumption that carbon particles dispersed in the matrix behave like dipoles.


Sign in / Sign up

Export Citation Format

Share Document