scholarly journals Mesoporous Zirconia Coating for Sensing Applications Using Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy

2021 ◽  
pp. 000370282110571
Author(s):  
Dominik Wacht ◽  
Mauro David ◽  
Borislav Hinkov ◽  
Hermann Detz ◽  
Andreas Schwaighofer ◽  
...  

Mid-infrared attenuated total reflection (ATR) spectroscopy is a powerful tool for in situ monitoring of various processes. Mesoporous silica, an extensively studied material, has already been applied in sensing schemes due to its high surface area and tunable surface chemistry. However, its poor chemical stability in aqueous solutions at pH values higher than 8 and strong absorption below 1250 cm−1 limits its range of applications. To circumvent these problems, a mesoporous zirconia coating on ATR crystals was developed. Herein, the synthesis, surface modification, and characterization of ordered mesoporous zirconia films on Si wafers and Si-ATR crystals are presented. The modified coating was applied in sensing schemes using aromatic and aliphatic nitriles in aqueous solution as organic pollutants. The mesoporous zirconia coating shows strong chemical resistance when kept in alkaline solution for 72 h. The success of surface modification is confirmed using Fourier transform infrared (FT-IR) spectroscopy and contact angle measurements. Benzonitrile and valeronitrile in water are used as model analytes to evaluate the enrichment performance of the film. The experimental results are fitted using Freundlich isotherms, and enrichment factors of 162 and 26 are calculated for 10 mg L−1 benzonitrile and 25 mg L−1 valeronitrile in water, respectively. Limits of detection of 1 mg L−1 for benzonitrile and 11 mg L−1 for valeronitrile are obtained. The high chemical stability of this coating allows application in diverse fields such as catalysis with the possibility of in situ monitoring using FT-IR spectroscopy.

2008 ◽  
Vol 62 (10) ◽  
pp. 1108-1114 ◽  
Author(s):  
Lee Gonzalez ◽  
Tim Wess

Developing a noninvasive method to assess the degraded state of historical parchments is essential to providing the best possible care for these documents. The conformational changes observed when collagen molecules, the primary constituent of parchment, unfold have been analyzed using attenuated total reflection–Fourier transform infrared (ATR-FT-IR) spectroscopy and the nanoscopic structural changes have been analyzed using X-ray diffraction (XRD). The relationship between the results obtained from these techniques was studied using principal component analysis, where correlation was found. The extent of gelatinization of historical parchments has been assessed using ATR-FT-IR and XRD and the frequency shifts observed as collagen degrades into gelatin have been reported. These results indicate that collagen degradation can be measured noninvasively in parchment and demonstrate the utility of ATR-FT-IR spectroscopy as a method to investigate historical documents.


2021 ◽  
pp. 000370282110025
Author(s):  
Leigh C. Ward

Conventional methods for measuring the concentration of deuterium in body fluids are by either isotope ratio mass spectrometry or Fourier transform infrared transmission (FT-IR) spectroscopy. The latter method is often preferred as it is less expensive and time consuming; however, having a lower sensitivity means a larger sample volume is required. This study investigated an alternative FT-IR spectroscopic method, attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR), which has the potential to provide shorter analysis times while requiring smaller sample volumes. Deuterium was assayed using ATR FT-IR in plasma in the concentration range 0.5 to 2.5 mg mL−1, typical of those observed in tracer dilution measurements of total body water. Minimal sample preparation was required and analysis time was substantially decreased compared to transmission FT-IR. Samples were analyzed with high precision (coefficient of variation (CV) < 0.5%). Precision of assay was maintained when assaying plasma volumes of only 10 µL . The application of the method to the determination of total body water in humans and animals (horses) was demonstrated. A rapid and simple method for the measurement of deuterium in plasma is described that only requires very small sample volumes, rendering the method suitable for use in pediatrics where blood sampling is required to be kept to a minimum.


Sign in / Sign up

Export Citation Format

Share Document