Bayes Estimation of Augmenting Gamma Strength Reliability of a System under Non-informative Prior Distributions

2017 ◽  
Vol 69 (1) ◽  
pp. 87-102 ◽  
Author(s):  
N. Chandra ◽  
V.K. Rathaur

In this article, Bayes estimation of system’s augmented strength reliability is studied under squared-error loss function (SELF) and LINEX loss function (LLF) for the generalized case of augmentation strategy plan (ASP). ASP is helpful in enhancing the strength reliability of weaker system/equipment. It is assumed that the stress (usual) and augmented strength follow a gamma distribution with common shape [Formula: see text] and scale [Formula: see text] parameters. A simulation study is performed for the comparisons of Bayes estimators of augmented strength reliability for non-informative types of prior (uniform and Jeffrey’s priors) with maximum likelihood estimators on the basis of their mean square errors and the absolute biases by simulating 1,000 Monte Carlo samples. The proposed methods are compared by analysing real and simulated datasets for illustration purpose.

Author(s):  
Aijaz Ahmad ◽  
Rajnee Tripathi

In this study, the shape parameter of the weighted Inverse Maxwell distribution is estimated by employing Bayesian techniques. To produce posterior distributions, the extended Jeffery's prior and the Erlang prior are utilised. The estimators are derived from the squared error loss function, the entropy loss function, the precautionary loss function, and the Linex loss function. Furthermore, an actual data set is studied to assess the effectiveness of various estimators under distinct loss functions.


2017 ◽  
Vol 6 (4) ◽  
pp. 70
Author(s):  
N. Sanjari Farsipour ◽  
A. Asgharzadeh

Consider the problem of estimating the common mean of knormal populations with known variances. We study the admisibility of the Best linear Risk Unbiased Equivariant (BLRUE)estimator of the common mean of k normalpopulations underthe squared error and LINEX loss function when the variancesare known.


2016 ◽  
Vol 6 (4) ◽  
pp. 70
Author(s):  
N. Sanjari Farsipour ◽  
A. Asgharzadeh

Consider the problem of estimating the common mean of knormal populations with known variances. We study the admisibility of the Best linear Risk Unbiased Equivariant (BLRUE)estimator of the common mean of k normalpopulations underthe squared error and LINEX loss function when the variancesare known.


2020 ◽  
Vol 9 (2) ◽  
pp. 38
Author(s):  
Josphat. K. Kinyanjui ◽  
Betty. C. Korir

This paper develops a Bayesian analysis of the scale parameter in the Weibull distribution with a scale parameter  θ  and shape parameter  β (known). For the prior distribution of the parameter involved, inverted Gamma distribution has been examined. Bayes estimates of the scale parameter, θ  , relative to LINEX loss function are obtained. Comparisons in terms of risk functions of those under LINEX loss and squared error loss functions with their respective alternate estimators, viz: Uniformly Minimum Variance Unbiased Estimator (U.M.V.U.E) and Bayes estimators relative to squared error loss function are made. It is found that Bayes estimators relative to squared error loss function dominate the alternative estimators in terms of risk function.


2015 ◽  
Vol 3 (2) ◽  
pp. 108 ◽  
Author(s):  
Hesham Reyad ◽  
Soha Othman Ahmed

<p>This paper seeks to focus on Bayesian and E-Bayesian estimation for the unknown shape parameter of the Gumbel type-II distribution based on type-II censored samples. These estimators are obtained under symmetric loss function [squared error loss (SELF))] and various asymmetric loss functions [LINEX loss function (LLF), Degroot loss function (DLF), Quadratic loss function (QLF) and minimum expected loss function (MELF)]. Comparisons between the E-Bayesian estimators with the associated Bayesian estimators are investigated through a simulation study.</p>


2016 ◽  
Vol 4 (1) ◽  
pp. 10 ◽  
Author(s):  
Hesham Reyad ◽  
Soha Othman Ahmed

<p>This paper introduces the Bayesian and E-Bayesian estimation for the shape parameter of the Kumaraswamy distribution based on type-II censored schemes. These estimators are derived under symmetric loss function [squared error loss (SELF))] and three asymmetric loss functions [LINEX loss function (LLF), Degroot loss function (DLF) and Quadratic loss function (QLF)]. Monte Carlo simulation is performed to compare the E-Bayesian estimators with the associated Bayesian estimators in terms of Mean Square Error (MSE).</p>


Sign in / Sign up

Export Citation Format

Share Document