Nevus Flammeus of the Nape, Glabella and Eyelids

1972 ◽  
Vol 11 (2) ◽  
pp. 112-118 ◽  
Author(s):  
K.L. Tan

Study of 2,901 clinically normal newborn infants showed the incidence of nevi of the nape and glabella and eyelids to be 266 per 1,000, whereas that of nuchal nevus alone was 234 per 1,000. Four familial patients were found, an incidence of 1.3 per 1,000. These nevae were not in creased significantly among 75 "abnormal" newborn infants studied.

1997 ◽  
Vol 17 (1) ◽  
pp. 132
Author(s):  
T. Terjesen ◽  
K. J. Holen ◽  
A. Tegnander

PEDIATRICS ◽  
1967 ◽  
Vol 39 (6) ◽  
pp. 876-883
Author(s):  
J. F. Lucey ◽  
T. Valaes ◽  
S. A. Doxiadis

Observations have been reported on the serum albumin PSP reserve dye binding capacity in a group of 93 newborn infants with total serum bilirubin concentrations ranging between 20 to 52 mg/100 ml. Eleven of these infants had a clinically established diagnosis of kernicterus at the time of these measurements. The PSP reserve dye binding capacity in these neurologically damaged infants was not different from that found in clinically normal infants with the same degree of jaundice. We, therefore, do not believe that this test is sufficiently sensitive to serve as a useful adjunct in assaying the risk of neurologic damage at a particular serum concentration of bilirubin.


2016 ◽  
Vol 03 (03) ◽  
pp. 155-159
Author(s):  
Elena Cubells ◽  
María Cernada ◽  
Isabel Torres-Cuevas ◽  
Julia Kuligowski ◽  
Javier Escobar ◽  
...  
Keyword(s):  

1978 ◽  
Vol 39 (03) ◽  
pp. 624-630 ◽  
Author(s):  
W E Hathaway ◽  
L L Neumann ◽  
C A Borden ◽  
L J Jacobson

SummarySerial quantitative immunoelectrophoretic (IE) measurements of antithrombin III heparin cofactor (AT III) were made in groups of well and sick newborn infants classified by gestational age. Collection methods (venous vs. capillary) did not influence the results; serum IE measurements were comparable to AT III activity by a clotting method. AT III is gestational age-dependent, increasing from 28.7% of normal adult values at 28-32 weeks to 50.9% at 37-40 weeks, and shows a gradual increase to term infant levels (57.4%) by 3-4 weeks of age. Infants with the respiratory distress syndrome (RDS) show lower levels of AT III in the 33-36 week group, 22% vs. 44% and in the 37-40 week group, 33.6% vs. 50.9%, than prematures without RDS. Infants of 28-32 week gestational age had only slight differences, RDS = 24%, non-RDS = 28.7%. The lowest levels of AT III were seen in patients with RDS complicated by disseminated intravascular coagulation and those with necrotizing enterocolitis. Crossed IE on representative infants displayed a consistent pattern which was identical to adult controls except for appropriate decreases in the amplitude of the peaks. The thrombotic complications seen in the sick preterm infant may be related to the low levels of AT III.


1980 ◽  
Vol 43 (02) ◽  
pp. 099-103 ◽  
Author(s):  
J M Whaun ◽  
P Lievaart ◽  

SummaryBlood from normal full term infants, mothers and normal adults was collected in citrate. Citrated platelet-rich plasma was prelabelled with 3H-adenine and reacted with release inducers, collagen and adrenaline. Adenine nucleotide metabolism, total adenine nucleotide levels and changes in sizes of these pools were determined in platelets from these three groups of subjects.At rest, the platelet of the newborn infant, compared to that of the mother and normal adult, possessed similar amounts of adenosine triphosphate (ATP), 4.6 ± 0.2 (SD), 5.0 ± 1.1, 4.9 ± 0.6 µmoles ATP/1011 platelets respectively, and adenosine diphosphate (ADP), 2.4 ± 0.7, 2.8 ± 0.6, 3.0 ± 0.3 umoles ADP/1011 platelets respectively. However the marked elevation of specific radioactivity of ADP and ATP in these resting platelets indicated the platelet of the neonate has decreased adenine nucleotide stores.In addition to these decreased stores of adenine nucleotides, infant platelets showed significantly impaired release of ADP and ATP on exposure to collagen. The release of ADP in infants, mothers, and other adults was 0.9 ± 0.5 (SD), 1.5 ± 0.5, 1.5 ± 0.1 umoles/1011 platelets respectively; that of ATP was 0.6 ± 0.3, 1.0 ± 0.1,1.3 ± 0.2 µmoles/1011 platelets respectively. With collagen-induced release, platelets of newborn infants compared to those of other subjects showed only slight increased specific radioactivities of adenine nucleotides over basal levels. The content of metabolic hypoxanthine, a breakdown product of adenine nucleotides, increased in both platelets and plasma in all subjects studied.In contrast, with adrenaline as release inducer, the platelets of the newborn infant showed no adenine nucleotide release, no change in total ATP and level of radioactive hypoxanthine, and minimal change in total ADP. The reason for this decreased adrenaline reactivity of infant platelets compared to reactivity of adult platelets is unknown.Infant platelets may have different membranes, with resulting differences in regulation of cellular processes, or alternatively, may be refractory to catecholamines because of elevated levels of circulating catecholamines in the newborn period.


1976 ◽  
Vol 36 (01) ◽  
pp. 200-207 ◽  
Author(s):  
Donald G. Corby ◽  
Thomas F. Zuck

SummaryPer cent aggregation, release and content of adenine nucleotides, and specific radioactivity were evaluated in citrated platelet-rich plasma (PRP) prepared from paired samples of maternal and cord blood. Platelets of newborn infants aggregated normally in response to high dose ADP (20 μM), strong collagen suspensions, and thrombin; however, when compared with PRP from the mothers or from normal adults, per cent aggregation in response to lower concentrations of ADP (2 μM), weak collagen, and part particularly epinephrine was markedly reduced. Nucleotide release after stimulation of the newborns’ PRP with the latter two inducers was also impaired. ATP and ADP content of the newborns’ platelets was also significantly less than that of their mothers or of normal adults, but specific activity was normal. The data suggest that the impairment of ADP release in the platelets of newborn infants is due to decreased sensitivity to external stimuli. Since metabolic ATP is necessary for the platelet release reaction, it is postulated that the platelet dysfunction results from a lack of metabolic ATP.


Sign in / Sign up

Export Citation Format

Share Document