Evaluation of Unfractionated Heparin Dosing by Antifactor Xa During Targeted Temperature Management Post Cardiac Arrest

2021 ◽  
pp. 001857872110613
Author(s):  
Carrigan Belcher ◽  
Vivek Kataria ◽  
Klayton M Ryman ◽  
Xuan Wang ◽  
Joon Yong Moon ◽  
...  

Purpose: To evaluate unfractionated heparin (UFH) dosing guided by antifactor Xa levels during targeted temperature management (TTM) post-cardiac arrest. Methods: Single-center, retrospective, observational study between January 1, 2014 and September 1, 2020. Patients initiated on TTM post-cardiac arrest and UFH were evaluated for inclusion. Patients included were ≥18 years of age and received weight-based UFH for ≥6 hours with 2 antifactor Xa levels drawn at target temperature. Excluded patients had no available temperature readings, received extracorporeal membrane oxygenation (ECMO) or factor Xa inhibitor (within 72 hours), or had hypertriglyceridemia or hyperbilirubinemia. The primary endpoint was to evaluate the proportion of patients that achieved a therapeutic antifactor Xa level between 0.3 and 0.7 IU/mL at steady state during TTM. Secondary endpoints included average UFH dose and average time to therapeutic antifactor Xa level at steady state; percent of first and total antifactor Xa levels subtherapeutic, therapeutic, and supratherapeutic during TTM. Results: A total of 73 patients met inclusion criteria. Of these, 21 patients achieved steady-state therapeutic antifactor Xa levels during TTM. The average time and dose to steady-state therapeutic antifactor Xa levels were 8.1 ± 4.5 hours and 9.9 ± 3.2 units/kg/hour. Overall, 61.7% of first and 47.4% of all antifactor Xa levels were supratherapeutic during TTM. Three (4.1%) patients experienced a major bleeding event. Conclusions: Guideline recommended UFH dosing, 12 or 18 units/kg/hour, during TTM resulted in more supratherapeutic antifactor Xa levels. Reduction of UFH infusion dose to 10 units/kg/hour may be required during TTM to maintain therapeutic antifactor Xa levels.

2020 ◽  
Vol 49 (1) ◽  
pp. 596-596
Author(s):  
Volodymyra Fedkiv ◽  
Song Oh ◽  
Angela Bingham ◽  
Justin Delic ◽  
Lauren Igneri ◽  
...  

2021 ◽  
pp. 088506662110189
Author(s):  
Merry Huang ◽  
Aaron Shoskes ◽  
Migdady Ibrahim ◽  
Moein Amin ◽  
Leen Hasan ◽  
...  

Purpose: Targeted temperature management (TTM) is a standard of care in patients after cardiac arrest for neuroprotection. Currently, the effectiveness and efficacy of TTM after extracorporeal cardiopulmonary resuscitation (ECPR) is unknown. We aimed to compare neurological and survival outcomes between TTM vs non-TTM in patients undergoing ECPR for refractory cardiac arrest. Methods: We searched PubMed and 5 other databases for randomized controlled trials and observational studies reporting neurological outcomes or survival in adult patients undergoing ECPR with or without TTM. Good neurological outcome was defined as cerebral performance category <3. Two independent reviewers extracted the data. Random-effects meta-analyses were used to pool data. Results: We included 35 studies (n = 2,643) with the median age of 56 years (interquartile range [IQR]: 52-59). The median time from collapse to ECMO cannulation was 58 minutes (IQR: 49-82) and the median ECMO duration was 3 days (IQR: 2.0-4.1). Of 2,643, 1,329 (50.3%) patients received TTM and 1,314 (49.7%) did not. There was no difference in the frequency of good neurological outcome at any time between TTM (29%, 95% confidence interval [CI]: 23%-36%) vs. without TTM (19%, 95% CI: 9%-31%) in patients with ECPR ( P = 0.09). Similarly, there was no difference in overall survival between patients with TTM (30%, 95% CI: 22%-39%) vs. without TTM (24%, 95% CI: 14%-34%) ( P = 0.31). A cumulative meta-analysis by publication year showed improved neurological and survival outcomes over time. Conclusions: Among ECPR patients, survival and neurological outcome were not different between those with TTM vs. without TTM. Our study suggests that neurological and survival outcome are improving over time as ECPR therapy is more widely used. Our results were limited by the heterogeneity of included studies and further research with granular temperature data is necessary to assess the benefit and risk of TTM in ECPR population.


Author(s):  
Thomas Hvid Jensen ◽  
Peter Juhl-Olsen ◽  
Bent Roni Ranghøj Nielsen ◽  
Johan Heiberg ◽  
Christophe Henri Valdemar Duez ◽  
...  

Abstract Background Transthoracic echocardiographic (TTE) indices of myocardial function among survivors of out-of-hospital cardiac arrest (OHCA) have been related to neurological outcome; however, results are inconsistent. We hypothesized that changes in average peak systolic mitral annular velocity (s’) from 24 h (h) to 72 h following start of targeted temperature management (TTM) predict six-month neurological outcome in comatose OHCA survivors. Methods We investigated the association between peak systolic velocity of the mitral plane (s’) and six-month neurological outcome in a population of 99 patients from a randomised controlled trial comparing TTM at 33 ± 1 °C for 24 h (h) (n = 47) vs. 48 h (n = 52) following OHCA (TTH48-trial). TTE was conducted at 24 h, 48 h, and 72 h after reaching target temperature. The primary outcome was 180 days neurological outcome assessed by Cerebral Performance Category score (CPC180) and the primary TTE outcome measure was s’. Secondary outcome measures were left ventricular ejection fraction (LVEF), global longitudinal strain (GLS), e’, E/e’ and tricuspid annular plane systolic excursion (TAPSE). Results Across all three scan time points s’ was not associated with neurological outcome (ORs: 24 h: 1.0 (95%CI: 0.7–1.4, p = 0.98), 48 h: 1.13 (95%CI: 0.9–1.4, p = 0.34), 72 h: 1.04 (95%CI: 0.8–1.4, p = 0.76)). LVEF, GLS, E/e’, and TAPSE recorded on serial TTEs following OHCA were neither associated with nor did they predict CPC180. Estimated median e’ at 48 h following TTM was 5.74 cm/s (95%CI: 5.27–6.22) in patients with good outcome (CPC180 1–2) vs. 4.95 cm/s (95%CI: 4.37–5.54) in patients with poor outcome (CPC180 3–5) (p = 0.04). Conclusions s’ assessed on serial TTEs in comatose survivors of OHCA treated with TTM was not associated with CPC180. Our findings suggest that serial TTEs in the early post-resuscitation phase during TTM do not aid the prognostication of neurological outcome following OHCA. Trial registration NCT02066753. Registered 14 February 2014 – Retrospectively registered,


2021 ◽  
pp. 001857872110323
Author(s):  
W. Anthony Hawkins ◽  
Jennifer Y. Kim ◽  
Susan E. Smith ◽  
Andrea Sikora Newsome ◽  
Ronald G. Hall

Background: Propofol is a key component for the management of sedation and shivering during targeted temperature management (TTM) following cardiac arrest. The cardiac depressant effects of propofol have not been described during TTM and may be especially relevant given the stress to the myocardium following cardiac arrest. The purpose of this study is to describe hemodynamic changes associated with propofol administration during TTM. Methods: This single center, retrospective cohort study evaluated adult patients who received a propofol infusion for at least 30 minutes during TTM. The primary outcome was the change in cardiovascular Sequential Organ Failure Assessment (cvSOFA) score 30 minutes after propofol initiation. Secondary outcomes included change in systolic blood pressure (SBP), mean arterial pressure (MAP), heart rate (HR), and vasopressor requirements (VR) expressed as norepinephrine equivalents at 30, 60, 120, 180, and 240 minutes after propofol initiation. A multivariate regression was performed to assess the influence of propofol and body temperature on MAP, while controlling for vasopressor dose and cardiac arrest hospital prognosis (CAHP) score. Results: The cohort included 40 patients with a median CAHP score of 197. The goal temperature of 33°C was achieved for all patients. The median cvSOFA score was 1 at baseline and 0.5 at 30 minutes, with a non-significant change after propofol initiation ( P = .96). SBP and MAP reductions were the greatest at 60 minutes (17 and 8 mmHg; P < .05 for both). The median change in HR at 120 minutes was −9 beats/minute from baseline. This reduction was sustained through 240 minutes ( P < .05). No change in VR were seen at any time point. In multivariate regression, body temperature was the only characteristic independently associated with changes in MAP (coefficient 4.95, 95% CI 1.6-8.3). Conclusion: Administration of propofol during TTM did not affect cvSOFA score. The reductions in SBP, MAP, and HR did not have a corresponding change in vasopressor requirements and are likely not clinically meaningful. Propofol appears to be a safe choice for sedation in patients receiving targeted temperature management after cardiac arrest.


Sign in / Sign up

Export Citation Format

Share Document