scholarly journals A continuous integral terminal sliding mode control approach for a class of uncertain nonlinear systems

2019 ◽  
Vol 52 (5-6) ◽  
pp. 720-728
Author(s):  
Huawei Niu ◽  
Qixun Lan ◽  
Yamei Liu ◽  
Huafeng Xu

In this article, the continuous integral terminal sliding mode control problem for a class of uncertain nonlinear systems is investigated. First of all, based on homogeneous system theory, a global finite-time control law with simple structure is proposed for a chain of integrators. Then, inspired by the proposed finite-time control law, a novel integral terminal sliding mode surface is designed, based on which an integral terminal sliding mode control law is constructed for a class of higher order nonlinear systems subject disturbances. Furthermore, a finite-time disturbance observer-based integral terminal sliding mode control law is proposed, and strict theoretical analysis shows that the composite integral terminal sliding mode control approach can eliminate chattering completely without losing disturbance attenuation ability and performance robustness of integral terminal sliding mode control. Simulation examples are given to illustrate the simplicity of the new design approach and effectiveness.

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Huihui Pan ◽  
Guangming Zhang

This paper presents a novel nonsingular fast terminal sliding mode control scheme for a class of second-order uncertain nonlinear systems. First, a novel nonsingular fast terminal sliding mode manifold (NNFTSM) with adaptive coefficients is put forward, and a novel double power reaching law (NDP) with dynamic exponential power terms is presented. Afterwards, a novel nonsingular fast terminal sliding mode (NNFTSMNDP) controller is designed by employing NNFTSM and NDP, which can improve the convergence rate and the robustness of the system. Due to the existence of external disturbances and parameter uncertainties, the system states under controller NNFTSMNDP cannot converge to the equilibrium but only to the neighborhood of the equilibrium in finite time. Considering the unsatisfying performance of controller NNFTSMNDP, an adaptive disturbance observer (ADO) is employed to estimate the lumped disturbance that is compensated in the controller in real-time. A novel composite controller is presented by combining the NNFTSMNDP method with the ADO technique. The finite-time stability of the closed-loop system under the proposed control method is proven by virtue of the Lyapunov stability theory. Both simulation results and theoretical analysis illustrate that the proposed method shows excellent control performance in the existence of disturbances and uncertainties.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Fengjiao Wu ◽  
Junling Ding ◽  
Zhengzhong Wang

The robust finite-time control for a Francis hydroturbine governing system is investigated in this paper. Firstly, the mathematical model of a Francis hydroturbine governing system is presented and the nonlinear vibration characteristics are analyzed. Then, on the basis of finite-time control theory and terminal sliding mode scheme, a new robust finite-time terminal sliding mode control method is proposed for nonlinear vibration control of the hydroturbine governing system. Furthermore, the designed controller has good robustness which could resist external random disturbances. Numerical simulations are employed to verify the effectiveness and superiority of the designed finite-time sliding mode control scheme. The approach proposed in this paper is simple and also provides a reference for relevant hydropower systems.


Sign in / Sign up

Export Citation Format

Share Document