scholarly journals Shuffle block SRGAN for face image super-resolution reconstruction

2020 ◽  
Vol 53 (7-8) ◽  
pp. 1429-1439
Author(s):  
Ziwei Zhang ◽  
Yangjing Shi ◽  
Xiaoshi Zhou ◽  
Hongfei Kan ◽  
Juan Wen

When low-resolution face images are used for face recognition, the model accuracy is substantially decreased. How to recover high-resolution face features from low-resolution images precisely and efficiently is an essential subtask in face recognition. In this study, we introduce shuffle block SRGAN, a new image super-resolution network inspired by the SRGAN structure. By replacing the residual blocks with shuffle blocks, we can achieve efficient super-resolution reconstruction. Furthermore, by considering the generated image quality in the loss function, we can obtain more realistic super-resolution images. We train and test SB-SRGAN in three public face image datasets and use transfer learning strategy during the training process. The experimental results show that shuffle block SRGAN can achieve desirable image super-resolution performance with respect to visual effect as well as the peak signal-to-noise ratio and structure similarity index method metrics, compared with the performance attained by the other chosen deep-leaning models.

Author(s):  
Shan Xue ◽  
Hong Zhu

In video surveillance, the captured face images are usually suffered from low-resolution (LR), besides, not all the probe images have mates in the gallery under the premise that only a single frontal high-resolution (HR) face image per subject. To address this problem, a novel face recognition framework called recursive label propagation based on statistical classification (ReLPBSC) has been proposed in this paper. Firstly, we employ VGG to extract robust discriminative feature vectors to represent each face. Then we select the corresponding LR face in the probe for each HR gallery face by similarity. Based on the picked HR–LR pairs, ReLPBSC is implemented for recognition. The main contributions of the proposed approach are as follows: (i) Inspired by substantial achievements of deep learning methods, VGG is adopted to achieve discriminative representation for LR faces to avoid the super-resolution steps; (ii) the accepted and rejected threshold parameters, which are not fixed in face recognition, can be achieved with ReLPBSC adaptively; (iii) the unreliable subjects never enrolled in the gallery can be rejected automatically with designed methods. Experimental results in [Formula: see text] pixels resolution show that the proposed method can achieve 86.64% recall rate while keeping 100% precision.


2013 ◽  
Vol 457-458 ◽  
pp. 1032-1036
Author(s):  
Feng Qing Qin ◽  
Li Hong Zhu ◽  
Li Lan Cao ◽  
Wa Nan Yang

A framework is proposed to reconstruct a super resolution image from a single low resolution image with Gaussian noise. The degrading processes of Gaussian blur, down-sampling, and Gaussian noise are all considered. For the low resolution image, the Gaussian noise is reduced through Wiener filtering algorithm. For the de-noised low resolution image, iterative back projection algorithm is used to reconstruct a super resolution image. Experiments show that de-noising plays an important part in single-image super resolution reconstruction. In the super reconstructed image, the Gaussian noise is reduced effectively and the peak signal to noise ratio (PSNR) is increased.


2020 ◽  
Author(s):  
Howard Martin ◽  
Suharjito

Abstract Face recognition has a lot of use on smartphone authentication, finding people, etc. Nowadays, face recognition with a constrained environment has achieved very good performance on accuracy. However, the accuracy of existing face recognition methods will gradually decrease when using a dataset with an unconstrained environment. Face image with an unconstrained environment is usually taken from a surveillance camera. In general, surveillance cameras will be placed on the corner of a room or even on the street. So, the image resolution will be low. Low-resolution image will cause the face very hard to be recognized and the accuracy will eventually decrease. That is the main reason why increasing the accuracy of the Low-Resolution Face Recognition (LRFR) problem is still challenging. This research aimed to solve the Low-Resolution Face Recognition (LRFR) problem. The datasets are YouTube Faces Database (YTF) and Labelled Faces in The Wild (LFW). In this research, face image resolution would be decreased using bicubic linear and became the low-resolution image data. Then super resolution methods as the preprocessing step would increase the image resolution. Super resolution methods used in this research are Super resolution GAN (SRGAN) [1] and Enhanced Super resolution GAN (ESRGAN) [2]. These methods would be compared to reach a better accuracy on solving LRFR problem. After increased the image resolution, the image would be recognized using FaceNet. This research concluded that using super resolution as the preprocessing step for LRFR problem has achieved a higher accuracy compared to [3]. The highest accuracy achieved by using ESRGAN as the preprocessing and FaceNet for face recognition with accuracy of 98.96 % and Validation rate 96.757 %.


Computers ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 41 ◽  
Author(s):  
Vahid Anari ◽  
Farbod Razzazi ◽  
Rasoul Amirfattahi

In the current study, we were inspired by sparse analysis signal representation theory to propose a novel single-image super-resolution method termed “sparse analysis-based super resolution” (SASR). This study presents and demonstrates mapping between low and high resolution images using a coupled sparse analysis operator learning method to reconstruct high resolution (HR) images. We further show that the proposed method selects more informative high and low resolution (LR) learning patches based on image texture complexity to train high and low resolution operators more efficiently. The coupled high and low resolution operators are used for high resolution image reconstruction at a low computational complexity cost. The experimental results for quantitative criteria peak signal to noise ratio (PSNR), root mean square error (RMSE), structural similarity index (SSIM) and elapsed time, human observation as a qualitative measure, and computational complexity verify the improvements offered by the proposed SASR algorithm.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 464
Author(s):  
Muhammad Irfan ◽  
Sahib Khan ◽  
Arslan Arif ◽  
Khalil Khan ◽  
Aleem Khaliq ◽  
...  

The super-resolution (SR) technique reconstructs a high-resolution image from single or multiple low-resolution images. SR has gained much attention over the past decade, as it has significant applications in our daily life. This paper provides a new technique of a single image super-resolution on true colored images. The key idea is to obtain the super-resolved image from observed low-resolution images. A proposed technique is based on both the wavelet and spatial domain-based algorithms by exploiting the advantages of both of the algorithms. A back projection with an iterative method is implemented to minimize the reconstruction error and for noise removal wavelet-based de-noising method is used. Previously, this technique has been followed for the grayscale images. In this proposed algorithm, the colored images are taken into account for super-resolution. The results of the proposed method have been examined both subjectively by observation of the results visually and objectively by considering the peak signal-to-noise ratio (PSNR) and mean squared error (MSE), which gives significant results and visually better in quality from the bi-cubic interpolation technique.


2013 ◽  
Vol 427-429 ◽  
pp. 1817-1821
Author(s):  
Feng Qing Qin ◽  
Li Hong Zhu ◽  
Li Lan Cao ◽  
Wa Nan Yang

In order to improve the resolution of single image with Pepper and Salt noise, a framework is proposed. In the low resolution imaging model, the Gaussian blur, down-sampling, as well as Pepper and Salt noise are considered. For the low resolution image, the Pepper and Salt noise is reduced through median filtering method. Super resolution reconstruction is performed on the de-noised low resolution image by iterative back projection algorithm. Experimental results show that the Pepper and Salt noise are removed effectively and the peak signal to noise ratio (PSNR) of the super resolution reconstructed image is improved.


Author(s):  
Jingwei Xin ◽  
Nannan Wang ◽  
Xinbo Gao ◽  
Jie Li

Facial prior knowledge based methods recently achieved great success on the task of face image super-resolution (SR). The combination of different type of facial knowledge could be leveraged for better super-resolving face images, e.g., facial attribute information with texture and shape information. In this paper, we present a novel deep end-to-end network for face super resolution, named Residual Attribute Attention Network (RAAN), which realizes the efficient feature fusion of various types of facial information. Specifically, we construct a multi-block cascaded structure network with dense connection. Each block has three branches: Texture Prediction Network (TPN), Shape Generation Network (SGN) and Attribute Analysis Network (AAN). We divide the task of face image reconstruction into three steps: extracting the pixel level representation information from the input very low resolution (LR) image via TPN and SGN, extracting the semantic level representation information by AAN from the input, and finally combining the pixel level and semantic level information to recover the high resolution (HR) image. Experiments on benchmark database illustrate that RAAN significantly outperforms state-of-the-arts for very low-resolution face SR problem, both quantitatively and qualitatively.


2021 ◽  
pp. 1-15
Author(s):  
Yongjie Chu ◽  
Touqeer Ahmad ◽  
Lindu Zhao

Low-resolution face recognition with one-shot is a prevalent problem encountered in law enforcement, where it generally requires to recognize the low-resolution face images captured by surveillance cameras with the only one high-resolution profile face image in the database. The problem is very tough because the available samples is quite few and the quality of unknown images is quite low. To effectively address this issue, this paper proposes Adapted Discriminative Coupled Mappings (AdaDCM) approach, which integrates domain adaptation and discriminative learning. To achieve good domain adaptation performance for small size dataset, a new domain adaptation technique called Bidirectional Locality Matching-based Domain Adaptation (BLM-DA) is first developed. Then the proposed AdaDCM is formulated by unifying BLM-DA and discriminative coupled mappings into a single framework. AdaDCM is extensively evaluated on FERET, LFW, and SCface databases, which includes LR face images obtained in constrained, unconstrained, and real-world environment. The promising results on these datasets demonstrate the effectiveness of AdaDCM in LR face recognition with one-shot.


Sign in / Sign up

Export Citation Format

Share Document