Enhanced interlaminar fracture toughness of carbon fiber/bismaleimide composites via microwave curing

2016 ◽  
Vol 51 (18) ◽  
pp. 2585-2595 ◽  
Author(s):  
Jing Zhou ◽  
Yingguang Li ◽  
Nanya Li ◽  
Xiaozhong Hao

Carbon fiber-reinforced polymer composites have been widely used in the aerospace industry. However, they are extremely sensitive to crack initiation, propagation and interlaminar delamination which severely reduce their service life. This paper demonstrated that the Mode-I interlaminar fracture toughness could be significantly improved in carbon fiber/bismaleimide composites using a microwave curing process. An increase of about 53.5% in critical load and an increase of approximately 133.5% and 61.2% in fracture toughness and fracture resistance have been achieved, respectively. The microwave manufacturing cycle for composites was cut to 44% of the thermal processing cycle. Dynamic mechanical thermal analysis was performed to investigate the enhanced interfacial strength in microwave-cured composites. The improvement in fracture toughness was attributed to a better interfacial adhesion between resin and fiber, which was investigated by the observation of fracture surfaces with optical microscopes.

2021 ◽  
Vol 11 (15) ◽  
pp. 6821
Author(s):  
Yong-Chul Shin ◽  
Seung-Mo Kim

In this study, a carbon nanotube (CNT) buckypaper was interleaved in a carbon-fiber-reinforced polymer (CFRP) composite to improve the interlaminar fracture toughness. Interleaving the film of a laminate-type composite poses the risk of deteriorating the in-plane mechanical properties. Therefore, the in-plane shear modulus and shear strength were measured prior to estimating the interlaminar fracture toughness. To evaluate the effect of the buckypaper on the interlaminar fracture toughness of the CFRP, double cantilever beam (DCB) and end notch flexure (ENF) tests were conducted for mode I and mode II delamination, respectively. No significant change was observed for the in-plane shear modulus due to the buckypaper interleaving and the shear strength decreased by 4%. However, the interlaminar fracture toughness of the CFRP increased significantly. Moreover, the mode II interlaminar fracture toughness of the CFRP increased by 45.9%. Optical micrographs of the cross-section of the CFRPs were obtained to compare the microstructures of the specimens with and without buckypaper interleaving. The fracture surfaces obtained after the DCB and ENF tests were examined using a scanning electron microscope to identify the toughening mechanism of the buckypaper-interleaved CFRP.


Sign in / Sign up

Export Citation Format

Share Document