microwave curing
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 48)

H-INDEX

25
(FIVE YEARS 4)

Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1348
Author(s):  
Senlin Nan ◽  
Wentao Li ◽  
Weiming Guan ◽  
Huabin Liu ◽  
Hongchao Zhao ◽  
...  

Various geotechnical experiments have used gypsum-cemented analog geotechnical materials. However, this material needs a long curing time, and the target strength is not easy to control. Therefore, this research adopted microwave heating as the curing method for this kind of material. Objectively, the authors investigated the variations in the material strength versus heating power and heating time. On this basis, we clarified the influence mechanism of microwaves on the strength of analog materials by analyzing material temperature, moisture content, and microstructure, which eventually led to an experimental control method for rapid strengthening of microwave field-controlled gypsum-cemented analog materials. Consequently, we drew the following conclusions. The stable strength of the material under high-power microwave curing was much lower than that under natural curing, while the material strength under low-power microwave curing was the closest to the material under natural curing.


2021 ◽  
Author(s):  
Zhiyong Tian ◽  
Yuxuan Yang ◽  
Hongtao Peng ◽  
Jiahui Huang ◽  
Yihua Zhou ◽  
...  

As the most widely used construction material, concrete has the characteristics of good compressive performance. The compressive strength of concrete is the most important performance index. However, the compressive strength of concrete measured is generally based on the standard curing period for 28 d. Its period for detection is long. Therefore, it is necessary to study a fast and effective detection method. This paper mainly introduces the experimental method of microwave curing concrete and the relationship between concrete strength values of curing specimens using microwave and standard methods. The experimental results show that concrete specimens exposed to accelerated curing condition under microwave irradiation can increase the strength quickly within a shorter time period depending upon the procedure used in this work. By analysing experimental data, a model of concrete strength at age of 28 d using microwave curing and standard curing methods is established, which can early estimate compressive strength of concrete and provide a quick method for measuring the strength in the field.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Guoshun Yan ◽  
Jiazheng Li ◽  
Yuqiang Lin ◽  
Xia Chen

In order to investigate the difference between internal and external hydration of hardened cement paste under microwave curing, a comparative study on the hydration products, hydration degree, fracture morphology, and pore structure between the inner part and outer part of hardened cement paste (Φ120 mm × 120 mm) under microwave curing was carried out by XRD-Rietveld refinement, TG-DSC, SEM, and MIP methods. The results show that the total hydration degree of the inner part is lower at early ages, but with the hydration, there is little difference in the hydration degree between inner and outer parts at later ages. Apart from granular AFt crystal formed in the inner part of hardened cement paste, there is little difference in the fracture morphology between internal and external hydration. The total porosity of the outer part is lower than that of the inner part.


2021 ◽  
Vol 03 (04) ◽  
pp. 1-1
Author(s):  
Pal S. Mangat ◽  
◽  
Shahriar Abubakri ◽  
Konstantinos Grigoriadis ◽  
Vincenzo Starinieri ◽  
...  

Microwave curing of repair patches provides an energy efficient technique for rapid concrete repair. It has serious economic potential due to time and energy saving especially for repairs in cold weather which can cause work stoppages. However, the high temperatures resulting from the combination of microwave exposure and accelerated hydration of cementitious repair materials need to be investigated to prevent potential durability problems in concrete patch repairs. This paper investigates the time and magnitude of the peak hydration temperature during microwave curing (MC) of six cement based concrete repair materials and a CEM II mortar. Repair material specimens were microwave cured to a surface temperature of 40-45 °C while their internal and surface temperatures were monitored. Their internal temperature was further monitored up to 24 hours in order to determine the effect of microwave curing on the heat of hydration. The results show that a short period of early age microwave curing increases the hydration temperature and brings forward the peak heat of hydration time relative to the control specimens which are continuously exposed to ambient conditions (20 °C, 60% RH). The peak heat of hydration of normal density, rapid hardening Portland cement based repair materials with either pfa or polymer addition almost merges with the end of microwave curing period. Similarly, lightweight polymer modified repair materials also develop heat of hydration rapidly which almost merges with the end of microwave curing period. The peak heat of hydration of normal density ordinary Portland cement based repair materials, with and without polymer addition, occurs during the post microwave curing period. The sum of the microwave curing and heat of hydration temperatures can easily exceed the limit of about 70 °C in some materials at very early age, which can cause durability problems.


2021 ◽  
Vol 282 ◽  
pp. 122685
Author(s):  
Yuli Wang ◽  
Shuqiong Luo ◽  
Lei Yang ◽  
Yahong Ding

Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2240
Author(s):  
Satoshi Horikoshi ◽  
Yuhei Arai ◽  
Nick Serpone

This study used controlled microwaves to elucidate the response of adhesive components to microwaves and examined the advantages of microwave radiation in curing epoxy adhesives. Curing of adhesives with microwaves proceeded very rapidly, even though each component of the adhesive was not efficiently heated by the microwaves. The reason the adhesive cured rapidly is that microwave heating was enhanced by the electrically charged (ionic) intermediates produced by the curing reaction. In contrast, the cured adhesive displayed lower microwave absorption and lower heating efficiency, suggesting that the cured adhesive stopped heating even if it continued to be exposed to microwaves. This is a definite advantage in the curing of adhesives with microwaves, as, for example, adhesives dropped onto polystyrene could be cured using microwave heating without degrading the polystyrene base substrate.


Sign in / Sign up

Export Citation Format

Share Document