Comparison of methods for the characterization of voids in glass fiber composites

2017 ◽  
Vol 52 (4) ◽  
pp. 487-501 ◽  
Author(s):  
Nisrin Abdelal ◽  
Steven L Donaldson

Voids are a concern in composite materials, as they may have a negative effect on the mechanical properties of the laminates. Voids may develop especially in low cost or off-optimum process conditions. In this study, samples of glass reinforced epoxy laminates with void volume fractions in the 0.5–7% range were successfully obtained by varying the vacuum in the hand layup vacuum bagging manufacturing process. Void content was experimentally characterized using four different methods: ultrasonic scanning, epoxy burn off, serial sectioning, and X-ray computed tomography. The goal of this paper was to determine how the methods compared with respect to each other at quantifying void content. The specimens were taken from nearby locations in the same panels, so a true comparison of the methods could be obtained. The results showed, for the specific material and manufacturing conditions used, that the four different techniques can quantify voids content but with a large variation in the accuracy. X-ray computed tomography was the most successful technique to characterize voids, followed by serial sectioning. Ultrasonic scanning and epoxy burn off were not recommended techniques to characterize voids for laminates manufactured with these materials and process conditions. However, epoxy burn off was a successful technique to calculate fiber and resin weight fraction.

2018 ◽  
Vol 928 ◽  
pp. 38-44 ◽  
Author(s):  
Mathew John ◽  
Raghu V. Prakash

The void formation in FRP composites is unavoidable and the void content measurement is very important to study its deleterious effects on the mechanical properties of the material. Generally destructive methods are used to calculate the void volume fraction. But the recent advances in X-ray computed tomography can be used to detect and quantify the void content in the composites in a non-destructive manner. In this study average area method is proposed and validated for the void volume measurement from the X-ray CT image slices through digital image processing. The effects of void size, shape and position in the accuracy of the measurement is studied and presented here. The void volume fraction of a CFRP laminate manufactured with compression molding technique is calculated by this method and found to be around 1%.


Author(s):  
Petr Hermanek ◽  
Filippo Zanini ◽  
Simone Carmignato

Manufacturing technologies deliver products that can suffer from various defects, one of which is internal porosity. Pores are present in most of the parts produced by, e.g., casting, additive manufacturing, and injection molding and can significantly affect the performance of the final products. Due to technological and economic limits, typically porosity cannot be completely removed by optimizing process parameters. It is therefore essential to have a measurement technique that can detect and evaluate these defects accurately. Apart from conventional nondestructive techniques, such as ultrasonic testing or Archimedes’ method that suffer from various limitations, X-ray computed tomography has emerged as a promising solution capable of measuring size, spatial distribution, and shape of pores. In this paper, a method to achieve traceable computed tomography measurements of internal porosity using a reference object with calibrated internal artificial defects is described and demonstrated on an industrial case study. Furthermore, the possibility to improve measurement results by optimizing parameters used for the evaluation of acquired data is discussed. The optimization method is based on an iterative procedure that reduces to ±5 × 10−5 mm3 the error of the measured values of total void content in the reference object.


1999 ◽  
Vol 11 (1) ◽  
pp. 199-211
Author(s):  
J. M. Winter ◽  
R. E. Green ◽  
A. M. Waters ◽  
W. H. Green

Sign in / Sign up

Export Citation Format

Share Document