air void content
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 24)

H-INDEX

9
(FIVE YEARS 4)

2022 ◽  
Vol 961 (1) ◽  
pp. 012101
Author(s):  
Ban Ali Kamil ◽  
Hamid Athab Eedan AlJameel

Abstract The proper design of a road’s surface layer can result in pavements that are not only better in terms of ride comfort and safety, but also in terms of noise reduction. The use of low-noise pavements may be an effective measure to reduce the acoustic pollution generated by road traffic This study aims to consider the effect of changed pavement features on the noise level. Tire/pavement noise is a major contributor to traffic noise at highway speeds. The effects of pavement properties, including air-void content, gradation properties, roughness, texture, pavement surface condition are major contributors to traffic noise at highway speeds. As the overall texture and IRI, increase noise levels. The results showed that greater air void content decreases the level of high-frequency noise.


2021 ◽  
Vol 147 (4) ◽  
pp. 04021059
Author(s):  
Diego Ramirez Cardona ◽  
Simon Pouget ◽  
Hervé Di Benedetto ◽  
François Olard

Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6385
Author(s):  
Wei Tang ◽  
Xin Yu ◽  
Ning Li ◽  
Fuqiang Dong ◽  
Zhongyuan Wang ◽  
...  

The use of rejuvenators has enhanced the workability of asphalt mixtures containing the reclaimed asphalt pavement (RAP). This conclusion is based on the determination of viscosity of asphalt binders, while not validated from reclaimed asphalt mixtures. In this study, the effect of two rejuvenators (ordinary and emulsified rejuvenator) on the workability of reclaimed asphalt mixtures was evaluated by measuring the mixing torque and determining the air void content of reclaimed mixtures. In addition, their effects on the performances of reclaimed mixture were studied via the three indexes tests, rutting test and freeze-thaw splitting tests. The experimental results show that mixing torque and air void content of reclaimed mixtures with the emulsified rejuvenator is 4% and 6% lower than that with the ordinary rejuvenator, respectively. This indicates that improvement of the workability of reclaimed mixtures can be achieved by using an emulsified rejuvenator, but not by an ordinary rejuvenator. That is also the reason that at least 20% greater high-temperature stability is found for reclaimed mixtures by using the emulsified rejuvenator than using the ordinary rejuvenator. In addition, reclaimed mixtures with the emulsified rejuvenator show similar moisture susceptibility to that with the ordinary rejuvenator. This study provides a feasible method to assess the workability effect of rejuvenators on reclaimed mixtures directly and recommends the use of an emulsified rejuvenator to improve the workability and high-temperature stability of reclaimed mixtures.


2021 ◽  
Vol 300 ◽  
pp. 124214
Author(s):  
Alexis Jair Enríquez-León ◽  
Thiago Delgado de Souza ◽  
Francisco Thiago Sacramento Aragão ◽  
André Maués Brabo Pereira ◽  
Liebert Parreiras Nogueira

2021 ◽  
Author(s):  
Ahmet Buğra İbiş ◽  
Burak Şengöz ◽  
Ali Topal ◽  
Derya Kaya Özdemir

Porous asphalt pavement is defined as an asphalt concrete that is designed with open gradation aggregate which helps in removing the water with an air void content of about 20% by creating drainage channels. Open gradation consists of large amounts of coarse aggregates and small amounts of fine aggregates. The water is drained due to this hollow structure, this air void content in the porous asphalt mixture which inevitably decreases with time is the main parameter affecting the service life as well as the structural and functional performance. Moreover, the reduction in air void content is one of the main reasons for the loss of permeability in porous asphalt pavements and this lead to the increase in pavement density under heavy traffic conditions. Each country has its own technical asphalt specification involving the required compaction energy and temperature. This study involves the effect of compaction temperatures and numbers on the air void in porous asphalt pavements prepared with 50/70 penetration grade bitumen. As a result of experimental studies, it has been observed that the reduced compaction temperature and the number of compaction (energy) increase the air void level in porous asphalt pavements.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4438
Author(s):  
Yujun Che ◽  
Shengwen Tang ◽  
Huashan Yang ◽  
Weiwei Li ◽  
Mengyuan Shi

This paper focuses on inspecting the influences of anti-foaming agent (AFA) on the performance of 3D printing cementitious materials (3DPC). The mini-slump, spreading diameter, yield stress, and strength of 3DPC were evaluated. Additionally, the air-void content, air-void morphology, and air-void size distribution of mortar with and without 0.05% AFA were assessed through image analysis. The mechanical performance and air-void structure of 3D printed samples were also investigated and compared to that of conventionally mould cast samples. Test results show that an optimal AFA content enables 3DPC to achieve favorable workability and mechanical performance. The addition of AFA exhibits lower air-void content in 3DPC than that of the sample without the AFA addition. This reduction in air-void content is further strengthened by the results of strength analysis. Electron microscope analysis shows that the use of AFA results in the suppressed formation of large air-voids during the process of fresh 3DPC. Moreover, the air-void morphology substantially influenced the mechanical performance of hardened 3DPC.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4238
Author(s):  
Piotr Pokorski ◽  
Piotr Radziszewski ◽  
Michał Sarnowski

The paper presents the issue of resistance to permanent deformations of bridge pavements placed upon concrete bridge decks. In Europe, bridge asphalt pavement usually consists of a wearing course and a protective layer, which are placed over the insulation (waterproofing). Protective layers of bridge pavement are commonly constructed using low air void content asphalt mixes as this provides the suitable tightness of such layers. Due to increased binder content, asphalt mixes for bridge pavement may have reduced resistance to permanent deformations. The article presents test results of resistance to permanent deformations of asphalt mixes for the protective layers. In order to determine the composition of mixtures with low air void content and resistance to permanent deformation, an experimental design was applied using a new concept of asphalt mix composition. Twenty-seven different asphalt mixture compositions were analyzed. The mixtures varied in terms of binder content, sand content and grit ratio. Resistance to permanent deformation was tested using the laboratory uniaxial cyclic compression method (dynamic load creep). On the basis of experimental results and statistical analysis, the functions of asphalt mixture permanent deformation resistance were established. This enabled a determination of suitable mixture compositions for protective layers for concrete bridge decks.


Author(s):  
Alexis Jair Enríquez-León ◽  
Thiago Delgado de Souza ◽  
Francisco Thiago Sacramento Aragão ◽  
Delson Braz ◽  
André Maués Brabo Pereira ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document