Mechanistic model for fiber crack density prediction in cyclically loaded carbon fiber-reinforced polymer during the damage initiation phase

2018 ◽  
Vol 53 (8) ◽  
pp. 993-1004 ◽  
Author(s):  
Chandrashekhar P Hiremath ◽  
K Senthilnathan ◽  
Niranjan K Naik ◽  
Anirban Guha ◽  
Asim Tewari

Prediction of the fiber crack density (as one of the microstructural damages) for unidirectional fiber-reinforced polymer composite under monotonic tensile load, using strength models, has been reported in the literature. However, the microstructural damage prediction for a fiber-reinforced polymer subjected to fatigue loading is still a challenge. In this work, a progressive damage initiation model was developed to predict the fiber crack density in carbon fiber-reinforced polymer composite subjected to fatigue loading. A stochastic model was used for modeling the fiber fatigue strength. Reduction in effective life of the fiber was modeled using linear Miner’s rule. Effect of fatigue strength parameters on fiber crack density was found to be considerable compared to the effect of interface shear strength. At a low number of cycles, fiber crack density obtained from the model was in good agreement with the experimentally measured fiber crack density.

2018 ◽  
Vol 284 ◽  
pp. 43-47
Author(s):  
M.S. Nikhamkin ◽  
N.A. Sazhenkov ◽  
D. Samodurov

The carbon fiber reinforced polymer composite are widely used in industry as major structural materials. They represent the greatest interest for the production of gas turbine engines parts because of their high specific strength. But before adaptation these materials into the structure, it is necessary to conduct a number of tests, both on test coupon and on structurally equivalent samples for determining physical, in particular, fatigue properties of these materials. However, the high cost of manufacturing coupons for such tests has a negative impact on the adaptation of carbon fiber reinforced polymer composite into the composition of final products. In this paper it is presented a method for fatigue tests of test coupon and structurally equivalent samples of carbon fiber reinforced polymer, aimed at reducing the consumption of coupons which are necessary for obtaining fatigue properties. Based on the developed method, a series of carbon fiber coupons was tested and the fatigue limit was obtained. At the same time, the use of coupons was minimized.


Sign in / Sign up

Export Citation Format

Share Document