Dielectric and mechanical properties of nickel silica core-shell reinforced PMMA nanocomposites

2021 ◽  
pp. 002199832110004
Author(s):  
DE Abulyazied ◽  
HM Abomostafa

This paper study the dielectric and mechanical properties of poly (methyl methacrylate)-nickel silica core-shell nanocomposite. Ni@SiO2/PMMA nanocomposite films were prepared by incorporating Ni@SiO2 nanoparticles in PMMA matrix using the solution casting method. The morphology of the prepared nanoparticles was examined through a High-resolution transition electron microscope (HRTEM), which revealed the formation of SiO2 shell at Ni magnetic nanoparticles. The dielectric properties of the nanocomposite films were studied as a function of temperature and frequency in the ranges of 30–180°C and 100 Hz – 5 MHz respectively. The incorporation of the nano Ni@SiO2 to PMMA has a positive effect on the dielectric constant ε′ of the nanocomposites, as well as, ε′ improved with increasing temperature. The real electric modulus (M′) of composites confirms the occurrence of dispersion in all composites at all temperatures. While dielectric loss tangent ε ″ and the loss part of electric modulus spectra (M) exhibit relaxation peaks which characterize possible relaxation of interfacial polarization in the interface between Ni@SiO2 core-shell and PMMA matrix, these peaks have shifted towards higher frequency with temperature. The relaxation and activation energies, Ec and Ea values decreased from 0.49 to 0.40 eV and from 0.87 to 0.70 eV respectively as Ni@SiO2 content increased. The ac conductivity of the nanocomposite films has deeply increased with increasing temperature and Ni@SiO2 content. The longitudinal modulus (L), shear modulus (G), Young's modulus (E), and bulk modulus (B) of films were studied and they increased as the filler increased from 0 to 15 wt.%.

Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1006 ◽  
Author(s):  
Yong You ◽  
Ling Tu ◽  
Yajie Wang ◽  
Lifen Tong ◽  
Renbo Wei ◽  
...  

Enhanced dielectric and mechanical properties of polyarylene ether nitrile (PEN) are obtained through secondary dispersion of polyaniline functionalized barium titanate (PANI-f-BT) by hot-stretching. PANI-f-BT nanoparticles with different PANI content are successfully prepared via in-situ aniline polymerization technology. The transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopic instrument (XPS) and Thermogravimetric analysis (TGA) results confirm that the PANI layers uniformly enclose on the surface of BaTiO3 nanoparticles. These nanoparticles are used as functional fillers to compound with PEN (PEN/PANI-f-BT) for studying its effect on the mechanical and dielectric performance of the obtained composites. In addition, the nanocomposites are uniaxial hot-stretched by 50% and 100% at 280 °C to obtain the oriented nanocomposite films. The results exhibit that the PANI-f-BT nanoparticles present good compatibility and dispersion in the PEN matrix, and the hot-stretching endows the second dispersion of PANI-f-BT in PEN resulting in enhanced mechanical properties, crystallinity and permittivity-temperature stability of the nanocomposites. The excellent performances of the nanocomposites indicate that a new approach for preparing high-temperature-resistant dielectric films is provided.


Author(s):  
Kai YAO ◽  
Yun XUE ◽  
Qian WU ◽  
Jing LI ◽  
Yan WANG ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document