scholarly journals HOPE Fixation of Cytospin Preparations of Human Cells for In Situ Hybridization and Immunocytochemistry

2003 ◽  
Vol 51 (7) ◽  
pp. 977-980 ◽  
Author(s):  
Oliver Umland ◽  
Artur J. Ulmer ◽  
Ekkehard Vollmer ◽  
Torsten Goldmann

In primary or cultured cells, in situ hybridization (ISH) or immunocytochemistry (ICC) is often performed on tissue that has been fixed by paraformaldehyde or Carnoy's. Recently we reported an optimized HOPE (HEPES–glutamic acid buffer-mediated organic solvent protection effect) fixation protocol for ISH targeting mRNA in lung tissues. We have now examined whether HOPE fixation could also be used on in vitro cultured cells for targeting mRNA by ISH or proteins by ICC on cytospin preparations. Using the myeloid stem cell line KG-1a as a model system, we showed that HOPE fixation can be applied for ISH and ICC on cultured cells. HOPE can be used with cells and tissues and with a broad spectrum of immunohistocytochemical and molecular techniques.

2004 ◽  
Vol 23 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Danijela Drakulic ◽  
Milena Stevanovic ◽  
Gordana Nikcevic

RNA-RNA in situ hybridization is a reliable method for studying tissue and cell specific gene expression, which enables visualization of labeled antisense RNA probe hybridized to specific mRNA. In this study we employed non-radioactive RNA-RNA in situ hybridization using biotin- or digoxigenin-labeled RNA probes in order to detect SOX gene expression in carcinoma cell lines. By this approach we confirmed results obtained by Northern blot analysis, where the presence of SOX2 mRNA in NT2/D1 and SOX14 mRNA in HepG2 cells has been established. Our aim was to set up RNA-RNA in situ hybridization method in in vitro cultured cells in order to perform further analyses of SOX gene expression on various normal and cancer tissues.


2003 ◽  
pp. 293-300 ◽  
Author(s):  
Anton K Raap ◽  
Frans M. van de Rijke ◽  
Roeland W. Dirks

2003 ◽  
pp. 367-376
Author(s):  
Anton K. Raap ◽  
Frans M. van de Rijke ◽  
Roeland W. Dirks

1993 ◽  
Vol 290 (3) ◽  
pp. 893-899 ◽  
Author(s):  
E Schönherr ◽  
L A Beavan ◽  
H Hausser ◽  
H Kresse ◽  
L A Culp

Immunostaining of adult human skin shows that the small dermatan sulphate proteoglycan decorin is abundant in the whole dermal layer but absent from the epidermis. In the papillary layer adjacent to the dermal-epidermal border, more decorin was detected than in the reticular layer of the dermis. Expression of decorin mRNA by cells in the papillary dermis could also be shown by in situ hybridization. In contrast, biglycan, another small chondroitin sulphate/dermatan sulphate proteoglycan, is found only at the dermal-epidermal border. Therefore the biosynthesis of these two proteoglycans by papillary and reticular fibroblasts from two different donors was compared in tissue culture. Papillary fibroblasts secrete up to 5.9 times more decorin than reticular fibroblasts, while the amounts of cell-associated decorin in both cell types are similar. By Northern blot analysis as well as by in situ hybridization it was shown that papillary fibroblasts contain more mRNA coding for decorin than do reticular cells. In addition, no mosaic pattern of decorin expression was found in the cultured cells. The expression and synthesis of biglycan compared with decorin was about 10 times lower and did not show any significant differences for the two cells types. The kinetics of secretion and the rate of endocytosis of decorin were similar for both types of fibroblasts. These results were found with fibroblasts between the 9th and 15th passage from a newborn subject as well as from a 78-year-old donor, indicating that the pattern of decorin synthesis is not age-dependent in the range investigated. These results further show that fibroblasts from different layers of the dermis have a specific pattern of synthesis of small chondroitin sulphate/dermatan sulphate proteoglycans, and they also maintain these patterns in cell culture.


2020 ◽  
Vol 27 (5) ◽  
pp. 432-446
Author(s):  
Akiko Yamamoto ◽  
Ken-ichiro Matsunaga ◽  
Toyoaki Anai ◽  
Hitoshi Kawano ◽  
Toshihisa Ueda ◽  
...  

Background: Intermediate Filaments (IFs) are major constituents of the cytoskeletal systems in animal cells. Objective: To gain insights into the structure-function relationship of invertebrate cytoplasmic IF proteins, we characterized an IF protein from the platyhelminth, Dugesia japonica, termed Dif-1. Method: cDNA cloning, in situ hybridization, immunohistochemical analysis, and IF assembly experiments in vitro using recombinant Dif-1, were performed for protein characterization. Results: The structure deduced from the cDNA sequence showed that Djf-1 comprises 568 amino acids and has a tripartite domain structure (N-terminal head, central rod, and C-terminal tail) that is characteristic of IF proteins. Similar to nuclear IF lamins, Djf-1 contains an extra 42 residues in the coil 1b subdomain of the rod domain that is absent from vertebrate cytoplasmic IF proteins and a nuclear lamin-homology segment of approximately 105 residues in the tail domain; however, it contains no nuclear localization signal. In situ hybridization analysis showed that Djf-1 mRNA is specifically expressed in cells located within the marginal region encircling the worm body. Immunohistochemical analysis showed that Djf-1 protein forms cytoplasmic IFs located close to the microvilli of the cells. In vitro IF assembly experiments using recombinant proteins showed that Djf-1 alone polymerizes into IFs. Deletion of the extra 42 residues in the coil 1b subdomain resulted in the failure of IF formation. Conclusions: Together with data from other histological studies, our results suggest that Djf- 1 is expressed specifically in anchor cells within the glandular adhesive organs of the worm and that Djf-1 IFs may play a role in protecting the cells from mechanical stress.


Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1502
Author(s):  
Jorge García-Hernández ◽  
Manuel Hernández ◽  
Yolanda Moreno

Vibrio parahaemolyticus is a human food-borne pathogen with the ability to enter the food chain. It is able to acquire a viable, non-cultivable state (VBNC), which is not detected by traditional methods. The combination of the direct viable count method and a fluorescent in situ hybridization technique (DVC-FISH) makes it possible to detect microorganisms that can present VBNC forms in complex samples The optimization of the in vitro DVC-FISH technique for V. parahaemolyticus was carried out. The selected antibiotic was ciprofloxacin at a concentration of 0.75 μg/mL with an incubation time in DVC broth of 5 h. The DVC-FISH technique and the traditional plate culture were applied to detect and quantify the viable cells of the affected pathogen in artificially contaminated food matrices at different temperatures. The results obtained showed that low temperatures produced an important logarithmic decrease of V. parahaemolyticus, while at 22 °C, it proliferated rapidly. The DVC-FISH technique proved to be a useful tool for the detection and quantification of V. parahaemolyticus in the two seafood matrices of oysters and mussels. This is the first study in which this technique has been developed to detect viable cells for this microorganism.


1990 ◽  
Vol 52 (1) ◽  
pp. 175-178
Author(s):  
Toshio IKEDA ◽  
Yasuhiro YOSHIKAWA ◽  
Kazuya YAMANOUCHI

1993 ◽  
Vol 104 (4) ◽  
pp. 1187-1197 ◽  
Author(s):  
R.W. Dirks ◽  
F.M. van de Rijke ◽  
S. Fujishita ◽  
M. van der Ploeg ◽  
A.K. Raap

We have determined optimal conditions for the detection of mRNA sequences in cultured cells by nonradioactive in situ hybridization. For this purpose a number of different cell lines have been used: rat 9G cells for the detection of human cytomegalovirus immediate early mRNA, and HeLa as well as 5637 carcinoma cells for the detection of housekeeping gene mRNAs. Extensive optimization of fixation and pretreatment conditions revealed that most intense hybridization signals are obtained when cells are grown on glass microscope slides, fixed with a mixture of formaldehyde and acetic acid, pretreated with pepsin and denatured prior to hybridization. In addition, we also studied the potential of fluorochromized probes for the direct detection of multiple RNA sequences. The optimized in situ hybridization procedure revealed that immediate early mRNA transcripts are, in addition to a cytoplasmic localization, localized within nuclei of rat 9G cells. Double hybridization experiments showed that intron and exon sequences colocalize within the main nuclear signal. In addition, the presence of small, intron-specific, fluorescent spots scattered around the main nuclear signals indicates that intron sequences which are spliced out can be visualized. Additional information about the functioning of cells could be obtained by the detection of mRNA simultaneously with bromodeoxyuridine, incorporated during S-phase, or its cognate protein. The sensitivity of these methods is such that mRNAs of abundantly expressed housekeeping genes can be detected in a variety of cell lines with high signal to noise ratios.


1987 ◽  
Vol 35 (8) ◽  
pp. 837-842 ◽  
Author(s):  
H Kreipe ◽  
H J Radzun ◽  
K Heidorn ◽  
C Mäder ◽  
M R Parwaresch

The cellular homologue of the retroviral oncogene v-fos has been shown to be involved in cell differentiation of hematopoietic cells. By use of the human promyelocyte cell line HL-60, several in vitro differentiation studies suggested a selective activation of c-fos during monocytic differentiation of myeloid precursor cells. In contrast to these observations, we found high levels of c-fos mRNA in purified normal human granulocytes, whereas c-fos was only faintly expressed in blood monocytes. In situ hybridization revealed that the high level of c-fos expression is restricted to neutrophilic granulocytes, whereas c-fos transcription is not detectable in eosinophilic granulocytes. These results indicate that in vitro differentiation systems can be misleading and may not reflect the in vivo situation. The high level of c-fos expression in neutrophilic granulocytes may be caused by superinduction due to the reduced capacity for protein synthesis in these cells.


2007 ◽  
Vol 15 (3) ◽  
pp. 399-408 ◽  
Author(s):  
Gianfranco Coppola ◽  
Basil Alexander ◽  
Dino Di Berardino ◽  
Elizabeth St John ◽  
Parvathi K. Basrur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document