Theoretical analysis on the development of opaque fibers based on Mie scattering

2012 ◽  
Vol 83 (4) ◽  
pp. 355-362 ◽  
Author(s):  
Ni Wang ◽  
Wenyan Pan ◽  
Meiwu Shi ◽  
Jianyong Yu

Mie scattering theory has been widely used to solve the problem of light scattering by single spherical particles in many fields. In this article, it was applied for the development of opaque fiber for the first time. Firstly, the spheroid particles were simplified as equivalent spherical particles. Then, the extinction coefficient was calculated using the Matlab program and the influences of the size parameter, refractive index and the wavelength of the incident light on the extinction coefficient were discussed in detail. Finally, the results indicated that the extinction coefficient depended greatly on the dimension and the refractive index of the particles, and also the wavelength of the incident light. For the development of the opaque fiber, it would be better to choose particles that had the higher refractive index and a certain diameter distribution to achieve the most effective light scattering.

1995 ◽  
Vol 60 (11) ◽  
pp. 1875-1887 ◽  
Author(s):  
Jaroslav Holoubek ◽  
Miroslav Raab

Theoretical background for an optical method is presented which makes it possible to distinguish unambiguously between voids and particles as light scattering sites in polymeric materials. Typical dependences of turbidity as a function of diameter of scattering elements, their volume fractions and also turbidity curves as a function of the wavelength of the incident light were calculated, based both on the Lorenz-Mie theory and the fluctuation theory. Such dependences calculated for polypropylene-containing voids on the one hand and particles, differing only slightly from the surrounding matrix in their refractive index, on the other hand, are markedly different. The most significant results are: (i) Turbidity is at least by two orders of magnitude larger for voids in comparison to embedded particles of ethylene-propylene (EPDM) rubber of the same size, concentration and at the same wavelength. (ii) The wavelength dependence of turbidity for EPDM particles and the inherent refractive index fluctuations in the polypropylene matrix is much steeper as compared to voids for all considered diameters (0.1-10 μm). Thus, the nature of stress whitening in complex polymeric materials can be determined from turbidity measurements.


2007 ◽  
Vol 48 (1) ◽  
pp. 303 ◽  
Author(s):  
M. Joseph Costello ◽  
So¨nke Johnsen ◽  
Kurt O. Gilliland ◽  
Christopher D. Freel ◽  
W. Craig Fowler

Author(s):  
Kelly Chance ◽  
Randall V. Martin

This chapter describes elastic scattering events, where the wavelength of the scattered light is unchanged from that of the incident light and conservative scattering, scattering without absorption, sometimes closely approximated in clouds. The scattering regime, scattering versus wavelengths and scatterer size are introduced. Polarization in scattering is described by the Stokes vector and the polarization ellipse. Molecular (Rayleigh) scattering is presented and its atmospherically-important inelastic component, Raman scattering (the Ring effect) quantified. Mie scattering for spherical particles is described as is the commonly-used Henyey-Greenstein Mie phase function approximation. Non-spherical scatterers are introduced. The Ångstrom exponent and the expansion of phase functions in Legendre polynomials are described.


2003 ◽  
Vol 12 (02) ◽  
pp. 149-155 ◽  
Author(s):  
Guohong Ma ◽  
Jun He ◽  
Sing-Hai Tang ◽  
Wanxin Sun ◽  
Zexiang Shen

Femtosecond nonlinear optical response of BaTiO 3 and ZrO 2 matrices doped with gold nanoparticle were investigated by off-resonance optical Kerr effect. The experimental results show that the third-order nonlinear optical susceptibility of the composite films strongly depends on metal particle size and matrix refractive index. A calculation based on Lorenz–Mie scattering theory was performed to explain the experimental results. Additionally, optimization of nonlinearity was obtained by considering the particle size and matrices refractive index.


2021 ◽  
Author(s):  
Paola Formenti ◽  
Claudia Di Biagio ◽  
Yue Huang ◽  
Jasper Kok ◽  
Marc Daniel Mallet ◽  
...  

Abstract. Optical particle counters (OPC) are widely used to measure the aerosol particle number size distribution at atmospheric ambient conditions and over a large size range. Their measurement principle is based on the dependence of light scattering on particle size. However, this dependence is not monotonic at all sizes and light scattering also depends on the particle composition (i.e., the complex refractive index, CRI) and morphology. Therefore, the conversion of the measured scattered intensity to the desired particle size depends on the microphysical properties of the sampled aerosol population and might not be unique at all sizes. While these complexities have been addressed before, corrections are typically applied ad-hoc and are not standardised. This paper addresses this issue by providing a consistent and extended database of pre−computed correction factors for a wide range of complex refractive index values representing the composition variability of atmospheric aerosols. These correction factors are calculated for five different commercial OPCs (USHAS, PCASP, FSSP, GRIMM and its airborne version Sky− GRIMM, CDP) by assuming Mie theory for homogeneous spherical particles, and by varying the real part of the CRI between 1.33 and 1.75 in steps of 0.01 and the imaginary part between 0.0 and 0.4 in steps of 0.001. Correction factors for mineral dust are provided at the CRI of 1.53 – 0.003i and account for the asphericity of these particles. The datasets described in this paper are distributed at open-access repository: https://doi.org/10.25326/234 (license CC BY, Formenti et al., 2021) maintained by the French national center for Atmospheric data and services AERIS to data users/geophysicists who number size distribution measurements from OPC for their research on atmospheric aerosols. Application and caveats of the CRI-corrections factors are presented and discussed. The dataset presented in this paper is not only useful for correcting the size distribution from an OPC when the particle refractive index is known, but even when only assumptions can be made. Furthermore, this dataset can be useful in calculating uncertainties or sensitivities of aerosol volume/mass/extinction from OPCs given no or limited knowledge of refractive index.


Sign in / Sign up

Export Citation Format

Share Document