A Study on the Relationships between Network Structure and Mechanical Properties of Interpenetrating Polymer Networks-Part 2: The Comparison of the Theory of Viscoelasticity for Thermoplastic Polyurethane Elastomers with Experiments

1995 ◽  
Vol 27 (4) ◽  
pp. 368-383 ◽  
Author(s):  
M. S. Song ◽  
Y. D. Shen ◽  
H. Chen ◽  
C. J. Hu
Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2334
Author(s):  
Ewa Głowińska ◽  
Paulina Kasprzyk ◽  
Janusz Datta

Bio-based polymeric materials and green routes for their preparation are current issues of many research works. In this work, we used the diisocyanate mixture based on partially bio-based diisocyanate origin and typical petrochemical diisocyanate for the preparation of novel bio-based thermoplastic polyurethane elastomers (bio-TPUs). We studied the influence of the diisocyanate mixture composition on the chemical structure, thermal, thermomechanical, and mechanical properties of obtained bio-TPUs. Diisocyanate mixture and bio-based 1,4-butanediol (as a low molecular chain extender) created bio-based hard blocks (HS). The diisocyanate mixture contained up to 75 wt % of partially bio-based diisocyanate. It is worth mentioning that the structure and amount of HS impact the phase separation, processing, thermal or mechanical properties of polyurethanes. The soft blocks (SS) in the bio-TPU’s materials were built from α,ω-oligo(ethylene-butylene adipate) diol. Hereby, bio-TPUs differed in hard segments content (c.a. 30; 34; 40, and 53%). We found that already increase of bio-based diisocyanate content of the bio-TPU impact the changes in their thermal stability which was measured by TGA. Based on DMTA results we observed changes in the viscoelastic behavior of bio-TPUs. The DSC analysis revealed decreasing in glass transition temperature and melting temperature of hard segments. In general, obtained materials were characterized by good mechanical properties. The results confirmed the validity of undertaken research problem related to obtaining bio-TPUs consist of bio-based hard building blocks. The application of partially bio-based diisocyanate mixtures and bio-based chain extender for bio-TPU synthesis leads to sustainable chemistry. Therefore the total level of “green carbons” increases with the increase of bio-based diisocyanate content in the bio-TPU structure. Obtained results constitute promising data for further works related to the preparation of fully bio-based thermoplastic polyurethane elastomers and development in the field of bio-based polymeric materials.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1679
Author(s):  
Yanning Zeng ◽  
Weiming Yang ◽  
Shuxin Liu ◽  
Xiahui Shi ◽  
Aoqian Xi ◽  
...  

Thermoset polymers show favorable material properties, while bringing about environmental pollution due to non-reprocessing and unrecyclable. Diels–Alder (DA) chemistry or reversible exchange boronic ester bonds have been employed to fabricate recycled polymers with covalent adaptable networks (CANs). Herein, a novel type of CANs with multiple dynamic linkers (DA chemistry and boronic ester bonds) was firstly constructed based on a linear copolymer of styrene and furfuryl methacrylate and boronic ester crosslinker. Thermoplastic polyurethane is introduced into the CANs to give a semi Interpenetrating Polymer Networks (semi IPNs) to enhance the properties of the CANs. We describe the synthesis and dynamic properties of semi IPNs. Because of the DA reaction and transesterification of boronic ester bonds, the topologies of semi IPNs can be altered, contributing to the reprocessing, self-healing, welding, and shape memory behaviors of the produced polymer. Through a microinjection technique, the cut samples of the semi IPNs can be reshaped and mechanical properties of the recycled samples can be well-restored after being remolded at 190 °C for 5 min.


Sign in / Sign up

Export Citation Format

Share Document