Three-phase series-connected photovoltaic generator for harmonic and reactive power compensation with battery energy storage device

2016 ◽  
Vol 39 (7) ◽  
pp. 1071-1080
Author(s):  
Maheswar P Behera ◽  
Pravat K Ray

This paper presents a photovoltaic (PV) generator along with a battery energy storage system connected in series with a three-phase grid. The objective of the proposed system is to provide uninterruptable compensation to the series-connected grid and non-linear load during strong sunlight as well as at night or in cloudy conditions. The interface between the grid and the PV is carried out through a voltage source converter (VSC), eliminating both the current and voltage harmonics and compensating the reactive power. The DC voltage control of the DC bus capacitor is employed in order to maintain unity power factor operation of the system, irrespective of changes in solar radiation level or due to change in load. Another control scheme is implemented to charge and discharge the connected battery whenever the sun goes out, to meet the DC bus voltage requirement of the VSC through a bidirectional DC-DC converter.

Author(s):  
Maheswar Prasad Behera ◽  
Pravat Kumar Ray

Abstract The feasibility of integration of Battery Energy Storage System (BESS) with a three-phase AC grid is being investigated in this paper. A converter is an inevitable part of a modern DC generating system. The link between the grid and the BESS is established through a Voltage Source Converter (VSC). Therefore, the converter can be utilized to dispatch the DC generated power to the connected AC grid and at the same time provides reactive power compensation and load harmonic compensation throughout the day. The DC bus voltage control of the converter system is carried out to keep the power factor always at unity, irrespective of the charging state of the battery source. The charging and discharging of the connected battery energy storage system are carried out through a bidirectional DC-DC converter. Adaptive hysteresis band current control (AHCC) scheme is employed to produce the switching signals. Finally, its performance is compared with the traditional hysteresis band control technique.


2009 ◽  
Vol 1 (3) ◽  
pp. 528-538
Author(s):  
M. R. I. Sheikh ◽  
S. M. A. Razzak

In this work, the STATCOM/SMES system with a voltage-source IGBT converter is modeled as a controllable energy source. The objective of the proposed STATCOM/SMES topology is to provide both active and reactive power, which can significantly decrease the voltage and power fluctuations of grid connected fixed speed wind generators. One major problem in wind generator output power smoothing is setting of the reference output power. Constant output power reference is not a good choice because there can be some cases where wind speed is very low and then sufficient power cannot be obtained. In that case, energy storage device can solve the problem but large energy capacity may be needed. To generate output power reference, a Simple Moving Average (SMA) technique is used which corresponds to the energy storage capacity. Thus the capacity of SMES can be small (50% of wind farm capacity). Real wind speed data is used in the simulation analyses, which validates the effectiveness of the proposed control strategy. Keywords: STATCOM/SMES; Energy storage system (ESS); Simple moving average (SMA); Fixed speed wind generator; Voltage source converter (VSC).© 2009 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.DOI: 10.3329/jsr.v1i3.2605         J. Sci. Res. 1 (3), 528-538 (2009)


2011 ◽  
Vol 55-57 ◽  
pp. 1361-1364
Author(s):  
Jun Li Zhang ◽  
Xiao Feng Lv ◽  
Chao Li

With the growth of industry manufacturers and population, power quality becomes more and more important issue, and is attracting significant attention due to the increase in the number of sensitive loads. A distribution static compensator (DSTATCOM) is a voltage source inverter (VS1)-based power electronic device, which is usually used to compensate reactive power and sustain the system voltage in distribution power system. Compared with the traditional STATCOM, multilevel STATCOMs exhibit faster dynamic response, smaller volume, lower cost, and higher ratings. A multilevel inverter connected to an energy storage device can control both active and reactive power flow, providing more flexible and versatile power transmission operation. SPWM is actually a kind of multi-pulse trigger mode and used to trigger the switches in DSTATCOM.


Author(s):  
D.V.N. Ananth ◽  
G.V. Nagesh Kumar

In this paper, enhanced field oriented control technique (EFOC) was adopted in Rotor Side Control (RSC) of DFIG converter for improved response during severe faults. The work is intended to damp pulsations in electromagnetic torque, improve voltage mitigation and limit surge currents and to enhance the operation of DFIG during voltage sags. The converter topology uses a battery energy storage system with capacitor storage system to further enhance operation of DFIG during faults. The battery and capacitor system in coordination provide additional real and reactive power support during faults and nearly constant voltage profile at stator and rotor terminals and limit overcurrents. For EFOC technique, rotor flux reference changes its value from synchronous speed to zero during fault for injecting current at the rotor slip frequency. In this process DC-Offset component of flux is controlled, decomposition during overvoltage faults. The offset decomposition of flux will be oscillatory in a conventional FOC, whereas in EFOC it will damp quickly. A comparison is made with proposed methodology with battery energy storage system and a conventional system. Later the system performance with under voltage of 50% the rated voltage with fault at PCC during 0.8 to 1.2 seconds is analysed using simulation studies.


Sign in / Sign up

Export Citation Format

Share Document